Show simple item record

dc.contributor.authorIdzik, Marcin
dc.contributor.authorGieorgica, Jacek
dc.date.accessioned2017-04-05T12:01:36Z
dc.date.available2017-04-05T12:01:36Z
dc.date.issued2016
dc.identifier.issn0208-6018
dc.identifier.urihttp://hdl.handle.net/11089/21210
dc.description.abstractThe holders of the mortgage loans constitute more than 6 percent of the individual customers of banks. In a wide-spread opinion, this group is regarded as homogeneous; however, the sociodemographic features not only do not explain, but actually conceal the diversified circumstances of the decisions made by the mortgage borrowers on the financial market. The diversifying factors are as follows: the psychographic profile, the attitude towards taking risks, the knowledge about the finances, caution, the inclination to get indebted and make savings. The objective of the research was to isolate homogeneous segments of the mortgage loan holders in terms of the circumstances of making consumer decisions on the financial market. Five homogeneous groups of mortgage borrowers were selected in terms of circumstances and motives behind the decisions on the financial market. This segmentation was conducted using latent class models (LCA). Latent class models enabled us to identify the feature subtypes connected with each other which are not recorded in a traditional approach. The research was conducted using a CAPI method on a nation-wide representative sample of mortgage loan holders of N=900, out of which N=800 were borrowers in Swiss francs, and N=100 were borrowers in Polish zlotys. The research was conducted by TNS Polska in March 2014 and second wave in March 2015 r.en_GB
dc.description.abstractPosiadacze kredytów mieszkaniowych stanowią ponad 6 proc. indywidualnych klientów banków. W potocznej opinii grupa ta uznawana jest za homogeniczną. Jednak cechy so­cjodemograficzne nie tylko nie wyjaśniają, ale wręcz maskują różnicowane uwarunkowania decyzji podejmowanych przez kredytobiorców mieszkaniowych na rynku finansowym. Czynniki różnicu­jące to profil psychograficzny, postawa wobec ryzyka, wiedza o finansach, przezorność, skłonność do zadłużania się i oszczędzania. Celem badań było wyodrębnienie jednorodnych segmentów po­siadaczy kredytów mieszkaniowych pod względem uwarunkowań decyzji konsumenckich na ryn­ku finansowym. Wyodrębniono pięć homogenicznych grup kredytobiorców mieszkaniowych pod względem uwarunkowań i motywów decyzji na rynku finansowym. Segmentację przeprowadzono z wykorzystaniem modeli klas ukrytych (LCA). Modele klas ukrytych umożliwiły identyfikację podtypów cech powiązanych ze sobą, które w tradycyjnym ujęcie nie są obserwowalne. Badania wykonano metodą CAPI na ogólnopolskiej reprezentatywnej próbie posiadaczy kredytów miesz­kaniowych N=900, z czego N=800 stanowili kredytobiorcy CHF, natomiast N=100 kredytobiorcy PLN. Badania zrealizował TNS Polska w marcu 2014 r. oraz w marcu 2015 r. (druga fala).pl_PL
dc.language.isoplpl_PL
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl_PL
dc.relation.ispartofseriesActa Universitatis Lodziensis. Folia Oeconomica;323
dc.subjectmortgage borrowersen_GB
dc.subjecttypological classificationen_GB
dc.subjectlatent class modelsen_GB
dc.subjectkredytobiorcy hipotecznipl_PL
dc.subjectklasyfikacja typologicznapl_PL
dc.subjectmodel klas ukrytychpl_PL
dc.titleKlasyfikacja typologiczna kredytobiorców hipotecznych z wykorzystaniem modeli klas ukrytychpl_PL
dc.title.alternativeTypological Classification of the Mortgage Borrowers With the use of the Latent Class Modelsen_GB
dc.typeArticlepl_PL
dc.rights.holder© Copyright by Uniwersytet Łódzki, Łódź 2016pl_PL
dc.page.number[203]-220
dc.contributor.authorAffiliationWarsaw University of Life Sciences, Faculty Of Economic Sciences
dc.contributor.authorAffiliationThe Polish Bank Association (ZBP)
dc.identifier.eissn2353-7663
dc.referencesAkaike H. (1987), Factor analysis and AIC, “Psychometrika”, vol. 52.pl_PL
dc.referencesAntonides G., van Raaij W.F. (1998), Consumer Behaviour. A European Perspective, John Wiley Sons, New York.pl_PL
dc.referencesBańbuła P. (2006), Oszczędności i wybór międzyokresowy: podejście behawioralne, „Materiały i Studia” 2006, nr 208, Narodowy Bank Polski, Warszawa 2006.pl_PL
dc.referencesBartholomew D.J., Knott M. (2002), Latent Variable Models and Factor Analysis, Arnold.pl_PL
dc.referencesBollen K. (1989), Structural equations with latent variables, New York, Wiley.pl_PL
dc.referencesBrowning M., Lusardi A. (1996), Household saving: micro teories and micro facts, „Journal of Economic Literatur”, vol. 34.pl_PL
dc.referencesDempster A.P., Laird N.M., Rubin D.B. (1997), Maximum Likelihood from incomplete data via EM algorithm, „Journal of the Royal Statistical Society” (series B), vol. 39, no. 1.pl_PL
dc.referencesFormann A.K. (2003), Latent class model diagnostics-A review and some proposals. Computational, Statistics Data Analysis, vol. 41.pl_PL
dc.referencesHagenaars J.A., McCutcheon A.L. (2002), Applied Latent Class Analysis, Cambridge University Press.pl_PL
dc.referencesKamakura Du R. W.A. (2006), Household Lifecycles and Life Styles in America, „Journal of Mar­keting Research”, vol. 43.pl_PL
dc.referencesKaplan D. (2003), Latent Class Models, Forthcoming. “Handbook for Quantitative Methodology”, Sage.pl_PL
dc.referencesKeel P., Fichter M., Quadflieg, N., Bulik C., Baxter M., Thornton L. (2004). Application of a latent class analysis to empirically define eating disorder phenotypes, “Psychiatry”, vol. 61.pl_PL
dc.referencesKeynes J.M. (1936), The general teory of employment, interest and money, MacMillan, London.pl_PL
dc.referencesLangeheine R. van de Pol F. (2002), Latent Markov Chains, “Applied Latent Class Analysis”, red. J.A. Hagenaars, A.L. McCutcheon, Cambridge University Press, New York.pl_PL
dc.referencesLubke G.H., Muthén B. (2005), Investigating population heterogeneity with factor mixture models. “Psychological Methods”, vol. 10.pl_PL
dc.referencesMagdison J., Vermunt J.K., Tran B. (2007), Using a Mixture Latent Markov Model to Analyze Lon­gitudinal U.S. Employment Data Involving Measurement Error, w: New Trends in Psychomet­rics, red. Shigemasu K., Okada A., Imaizum T., Hoshino T., „Frontiers Science Series” 2007, no. 55, Universal Academy Press Inc.pl_PL
dc.referencesPaas L.J., Vermunt J.K., Bijmolt T.H.A. (2007), Discrete time discrete state latent Markov modeling for assessing and predicting household acquisition of financial products, „Journal of the Royal Statistical Society” (series A), vol. 170, no. 4.pl_PL
dc.referencesShefrin H.M., Thaler R.H. (1988), The behavioral life‑cycle hypothesis, „Economic Inquiry”, vol. 26 (4), Oxford University Press.pl_PL
dc.referencesSingh A. (2010), Market segmentation in FMCG: time to drive new basis for market segmentation, “International Journal of Research in Commerce Management”, vol. 1, no. 8.pl_PL
dc.referencesSmith W. (1956), Product differentiation and market segmentation as alternative marketing strate­gies, “Journal of Marketing”, vol. 21.pl_PL
dc.referencesThaler R.H., Shefrin H. M. (1981), An Economic Theory of Self‑Control, „Journal of Political Econ­omy”, vol. 89(2), University of Chicago Press.pl_PL
dc.referencesTofighi D., Enders C.K. (2007), Identifying the correct number of classes in a growth mixture model, [w:] G.R. Hancock (ed.), Mixture models in latent variable research, Greenwich.pl_PL
dc.referencesVermunt J., Magidson J. (2003), Encyclopedia of Social Science Research Methods, Sage Publica­tions: Vermuntpl_PL
dc.referencesVermunt J.K., Magidson J. (2005), Technical Guide for Latent GOLD 4.0: Basic and Advanced, Statistical Innovations, Belmont.pl_PL
dc.referencesVermunt J.K., Magidson J. (2008), LG‑Syntax User’s Guide: Manual for Latent GOLD 4.5 Syntax Module, Statistical Innovations, Belmont.pl_PL
dc.referencesWebley P., Nyhus E.K. (2001), Representations of Saving and Saving Behaviour, w: Everyday Rep­resentations of the Economy, red. Ch. Roland‑Levy, E. Kirchler, E. Penz, C. Gray, WUV Uni­versitatsverlag, Wien.pl_PL
dc.referencesYang C. (2006), Evaluating latent class analyses in qualitative phenotype identification, “Computa­tional Statistics Data Analysis”, vol. 50.pl_PL
dc.contributor.authorEmailmarcin_idzik@sggw.pl
dc.contributor.authorEmailjacek.gieorgica@zbp.pl
dc.identifier.doi10.18778/0208-6018.323.14
dc.relation.volume4pl_PL
dc.subject.jelC38
dc.subject.jelE03
dc.subject.jelG20


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record