Pokaż uproszczony rekord

dc.contributor.authorBasu, Sanji
dc.date.accessioned2016-02-15T07:20:51Z
dc.date.available2016-02-15T07:20:51Z
dc.date.issued2013
dc.identifier.issn0208-6204
dc.identifier.urihttp://hdl.handle.net/11089/16966
dc.descriptionThe author is thankful to the referee for his valuable comments and suggestions that led to an improvement of the paper. He also owes to Prof. M. N. Mukherjee of the Deptt. of Pure Mathematics, Calcutta University, for the present linguistically improved version.pl_PL
dc.description.abstractHere in this paper we intend to deal with two questions: How large is a “Lebesgue Class” in the topology of Lebesgue integrable functions, and also what can be said regarding the topological size of a “Lebesgue set” in R?, where by a Lebesgue class (corresponding to some x in R) is meant the collection of all Lebesgue integrable functions for each of which the point x acts as a common Lebesgue point, and, by a Lebesgue set (corresponding to some Lebesgue integrable function f ) we mean the collection of all ebesgue points of f. However, we answer these two questions in a more general setting where in place of Lebesgue integration we use abstract integration in locally compact Hausdorff topological groups.pl_PL
dc.language.isoenpl_PL
dc.publisherŁódź University Presspl_PL
dc.relation.ispartofseriesActa Universitatis Lodziensis. Folia Mathematica;1
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rightsUznanie autorstwa-Bez utworów zależnych 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/3.0/pl/*
dc.subjectBaire-propertypl_PL
dc.subjectCarathe odory functionpl_PL
dc.subjectdemi-spherespl_PL
dc.subjectHaar measurepl_PL
dc.subjectKuratowski-Ulam theorempl_PL
dc.subjectLebesgue densitypl_PL
dc.subjectLebesgue setpl_PL
dc.subjectLebesgue classpl_PL
dc.subjectlocally compact groupspl_PL
dc.subject.otherAMS Subject Classification. Primary 28A
dc.titleIntegrable Functions Versus a Generalization of Lebesgue Points in Locally Compact Groupspl_PL
dc.typeArticlepl_PL
dc.page.number21-32pl_PL
dc.contributor.authorAffiliationDepartment of Mathematics Govt College of Engg and Textile Technology 12, William Carey Road, Serampore, W.B-712201pl_PL
dc.referencesC. D. Aliprantis and O.Burkinshaw, Principles of real analysis, Academic Press, 1998.pl_PL
dc.referencesS. Basu, Some results on integration in locally compact groups and a typical extension of a theorem of Goffman, under preparation.pl_PL
dc.referencesS. Basu, Generalization of some theorems of Steinhaus in locally compact groups, Glasnik Matematicki, Vol. 31(51) (1996), pp. 101–107.pl_PL
dc.referencesW. W. Comfort and H. Gordon, Vitali’s theorem for invariant measures, Trans. Amer. Math. Soc. 99 (1961), pp. 83.pl_PL
dc.referencesR. Engelking, General Topology, Translated from the Polish by the author, second edition, Sigma Series in Pure Mathematics, 6. Heldermann Vrelag, Berlin 1989, pp. viii+529pl_PL
dc.referencesP. R. Halmos, Measure Theory, Van Nostrand, 1950pl_PL
dc.referencesK. Kuratowski, Topology, Vol 1, Academic Press, 1966pl_PL
dc.referencesB. K. Lahiri, Density and approximate continuity in topological groups, Journal Indian Mathematical Society 41 (1977), pp. 129–141.pl_PL
dc.referencesJ. C. Oxtoby, Measure and Category, Springer-Verlag, 1980.pl_PL
dc.contributor.authorEmailsanjibbasu08@gmail.compl_PL
dc.relation.volume18pl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 3.0 Polska
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 3.0 Polska