Better Alternatives for Stepwise Discriminant Analysis
Abstract
Discriminant Analysis can be best defined as a technique which allows the classification of an individual into several distinctive populations on the basis of a set of measurements. Stepwise discriminant analysis (SDA) is concerned with selecting the most important variables whilst retaining the highest discrimination power possible. The process of selecting a smaller number of variables is often necessary for a variety number of reasons. In the existing statistical software packages SDA is based on the classic feature selection methods. Many problems with such stepwise procedures have been identified. In this work the new method based on the metaheuristic strategy tabu search will be presented together with the experimental results conducted on the selected benchmark datasets. The results are promising. Analiza dyskryminacyjna to jedna z metod umożliwiających klasyfikację obserwacji do jednej z predefiniowanych klas na podstawie wartości pomierzonych cech. Celem krokowej analizy dyskryminacyjnej (KAD) jest wybór podzbioru cech wejściowych przy zachowaniu możliwie dużej mocy dyskryminacyjnej. Zmniejszenie wymiarowości wejściowej przestrzeni cech jest konieczne z wielu powodów. W istniejących na rynku, komercyjnych pakietach do obliczeń statystycznych, KAD bazuje na klasycznych metodach selekcji cech. Metody te generują wiele problemów. W prezentowanej pracy zostanie przedstawiona alternatywna metoda wykorzystująca metaheurystykę przeszukiwania z tabu. Wyniki eksperymentalne na wzorcowych zbiorach danych są obiecujące.
Collections