A Stopping Rule for Simulation‑Based Estimation of Inclusion Probabilities
Abstract
Design‑based estimation of finite population parameters such as totals usually relies on the knowledge of inclusion probabilities characterising the sampling design. They are directly incorporated into sampling weights and estimators. However, for some useful sampling designs, these probabilities may remain unknown. In such a case, they may often be estimated in a simulation experiment which is carried out by repeatedly generating samples using the same sampling scheme and counting occurrences of individual units. By replacing unknown inclusion probabilities with such estimates, design‑based population total estimates may be computed. The calculation of required sample replication numbers remains an important challenge in such an approach. In this paper, a new procedure is proposed that might lead to the reduction in computational complexity of simulations. Estymacja parametrów populacji skończonych i ustalonych, prowadzona w ramach podejścia randomizacyjnego, zazwyczaj wymaga znajomości prawdopodobieństw inkluzji charakteryzujących schemat losowania próby. Są one bezpośrednio wykorzystywane w celu wyznaczenia wag przypisanych poszczególnym wylosowanym jednostkom i uwzględniane podczas obliczania estymatorów. Jednak dla pewnych użytecznych schematów losowania pozostają nieznane. W takim wypadku możliwe jest ich wyznaczenie na drodze symulacyjnej, poprzez wielokrotne losowanie prób z wykorzystaniem tego samego schematu losowania i zliczanie wystąpień poszczególnych jednostek populacji. Zastępując nieznane prawdopodobieństwa inkluzji oszacowaniami uzyskanymi w wyniku takiego eksperymentu, otrzymuje się oszacowania wartości globalnej badanej cechy populacji. Szczególnym wyzwaniem podczas takiego postępowania jest wyznaczenie liczby replikacji próby, zapewniającej wymaganą precyzję estymacji. W niniejszym artykule proponowana jest nowa procedura, która może przyczynić się do zmniejszenia złożoności obliczeniowej eksperymentu symulacyjnego.
Collections