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Abstract

In this paper, by considering the notion of MV -module, which is the struc-

ture that naturally correspond to lu-modules over lu-rings, we study injective

MV -modules and we investigate some conditions for constructing injective MV -

modules. Then we define the notions of essential A-homomorphisms and essential

extension of A-homomorphisms, where A is a product MV -algebra, and we get

some of there properties. Finally, we prove that a maximal essential extension of

any A-ideal of an injective MV -module is an injective A-module, too.

Mathematical Subject Classification (2010): 06D35, 06F99, 16D80.

Keywords: (MV,PMV )-algebra, MV -module, Injective MV -module, Es-
sential extension.

1. Introduction

MV -algebras were defined by C.C. Chang [2] as algebras corresponding to
the Lukasiewicz infinite valued propositional calculus. These algebras have
appeared in the literature under different names and polynomially equiva-
lent presentation: CN -algebras, Wajsberg algebras, bounded commutative
BCK-algebras and bricks. It is discovered that MV -algebras are naturally
related to the Murray-von Neumann order of projections in operator alge-
bras on Hilbert spaces and that they play an interesting role as invariants
of approximately finite-dimensional C∗-algebras. They are also naturally
related to Ulam

,

s searching games with lies. MV -algebras admit a natural
lattice reduct and hence a natural order structure. Many important prop-
erties can be derived from the fact, established by Chang that nontrivial
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MV -algebras are subdirect products of MV -chains, that is, totally ordered
MV -algebras. To prove this fundamental result, Chang introduced the no-
tion of prime ideal in an MV -algebra. The categorical equivalence between
MV -algebras and lu-groups leads to the problem of defining a product op-
eration on MV -algebras, in order to obtain structures corresponding to
l-rings. A product MV -algebra (or PMV -algebra, for short) is an MV -
algebra which has an associative binary operation “.”. It satisfies an extra
property which will be explained in Preliminaries. During the last years,
PMV -algebras were considered and their equivalence with a certain class
of l-rings with strong unit was proved. It seems quite natural to introduce
modules over such algebras, generalizing the divisible MV -algebras and
the MV -algebras obtained from Riesz spaces and to prove natural equiv-
alence theorems. Hence, the notion of MV -modules was introduced as an
action of a PMV -algebra over an MV -algebra by A. Di Nola [5]. Recently,
some reasearchers worked on MV -modules (see [1, 10, 7]. For example, in
2016, R. A. Borzooei and S. Saidi Goraghani introduced free MV -modules.
Since MV -modules are in their infancy, stating and opening of any subject
in this field can be useful.

Now, in this paper, we present the definition of injective MV -modules
and obtain some interesting results on them. Also, we define the notions of
essential A-homomorphisms and essential extension of A-homomorphisms,
where A is a PMV -algebra. Finally, we prove that every maximal essential
extension of an A-ideal in injective A-module I is injective if it was included
in I. In fact, we open new fields to anyone that is interested to studying
and development of MV -modules.

2. Preliminaries

In this section, we review some definitions and related lemmas and theorems
that we use in the next sections.

Definition 2.1. [3] An MV-algebra is a structure M = (M,⊕,′ , 0) of type
(2, 1, 0) such that:
(MV 1) (M,⊕, 0) is an Abelian monoid,
(MV 2) (a′)′ = a,
(MV 3) 0′ ⊕ a = 0′,
(MV 4) (a′ ⊕ b)′ ⊕ b = (b′ ⊕ a)′ ⊕ a,
If we define the constant 1 = 0′ and operations ⊙ and ⊖ by a⊙b = (a′⊕b′)′,
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a⊖ b = a⊙ b′, then
(MV 5) (a⊕ b) = (a′ ⊙ b′)′,
(MV 6) x⊕ 1 = 1,
(MV 7) (a⊖ b)⊕ b = (b⊖ a)⊕ a,
(MV 8) a⊕ a′ = 1,
for every a, b ∈ M .

Now, let M = (M,⊕,′ , 0) be an MV -algebra. It is clear that (M,⊙, 1)
is an Abelian monoid. If we define auxiliary operations ∨ and ∧ on M
by a ∨ b = (a ⊙ b′) ⊕ b and a ∧ b = a ⊙ (a′ ⊕ b), for every a, b ∈ M ,
then (M,∨,∧, 0) is a bounded distributive lattice. An MV -algebra M is
a Boolean algebra if and only if the operation “ ⊕ ” is idempotent, that is
x⊕ x = x, for every x ∈ M .

A subalgebra of an MV -algebra M is a subset S of M containing the
zero element of M , closed under the operation of M and equipped with the
restriction to S of these operations. In an MV -algebra M , the following
conditions are equivalent: (i) a′⊕b = 1, (ii) a⊙b′ = 0, (iii) b = a⊕(b⊖a),
(iv) ∃c ∈ M such that a ⊕ c = b, for every a, b, c ∈ M . For any two
elements a, b of the MV -algebra M , a ≤ b if and only if a, b satisfy the
above equivalent conditions (i) − (iv). An ideal of MV -algebra M is a
subset I of M , satisfying the following conditions: (I1): 0 ∈ I, (I2): x ≤ y
and y ∈ I imply x ∈ I, (I3): x⊕ y ∈ I, for every x, y ∈ I.

In an MV -algebra M , the distance function d : M×M → M is defined
by d(x, y) = (x ⊖ y) ⊕ (y ⊖ x) which satisfies (i): d(x, y) = 0 if and only
if x = y, (ii): d(x, y) = d(y, x), (iii): d(x, z) ≤ d(x, y) ⊕ d(y, z), (iv):
d(x, y) = d(x′, y′), (v): d(x⊕z, y⊕t) ≤ d(x, y)⊕d(z, t), for every x, y, z, t ∈
M .

Let I be an ideal of MV -algebra M . We denote x ∼ y (x ≡I y) if and
only if d(x, y) ∈ I, for every x, y ∈ M . So ∼ is a congruence relation on
M . Denote the equivalence class containing x by x

I
and M

I
= {x

I
: x ∈ M}.

Then (M
I
,⊕,′ , 0

I
) is an MV -algebra, where (x

I
)′ = x′

I
and x

I
⊕ y

I
= x⊕y

I
,

for all x, y ∈ M .
Let M and K be two MV -algebras. A mapping f : M → K is called

an MV -homomorphism if (H1): f(0) = 0, (H2): f(x ⊕ y) = f(x) ⊕ f(y)
and (H3): f(x′) = (f(x))′, for every x, y ∈ M . If f is one to one (onto),
then f is called an MV -monomorphism (MV -epimorphism) and if f is
onto and one to one, then f is called an MV -isomorphism.
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Lemma 2.2. [3] In every MV -algebra M , the natural order “ ≤ ” has the
following properties:
(i) x ≤ y if and only if y′ ≤ x′,
(ii) if x ≤ y, then x⊕ z ≤ y ⊕ z, for every z ∈ M .

Lemma 2.3. [3] Let M and N be two MV -algebras and f : M → N be an
MV -homomorphism. Then the following properties hold:
(i) For each ideal J of N , the set

f−1(J) = {x ∈ M : f(x) ∈ J}

is an ideal of A. Hence, Ker(f) = f−1({0}) is an ideal of M ,
(ii) f(x) ≤ f(y) if and only if x⊖ y ∈ Ker(f),
(iii) f is injective if and only if Ker(f) = {0}.

Definition 2.4. [4] A product MV -algebra (or PMV -algebra, for short)
is a structure A = (A,⊕, .,′ , 0), where (A,⊕,′ , 0) is an MV -algebra and
“.” is a binary associative operation on A such that the following property
is satisfied: if x + y is defined, then x.z + y.z and z.x + z.y are defined
and (x + y).z = x.z + y.z, z.(x + y) = z.x + z.y, for every x, y, z ∈ A,
where “ + ” is the partial addition on A. A unit of PMV -algebra A is an
element e ∈ A such that e.x = x.e = x, for every x ∈ A. If A has a unit,
then e = 1. A PMV -homomorphism is an MV -homomorphism which also
commutes with the product operation.

Lemma 2.5. [4] Let A be a PMV -algebra. Then a ≤ b implies that a.c ≤ b.c
and c.a ≤ c.b, for every a, b, c ∈ A.

Definition 2.6. [5] Let A=(A,⊕, .,′, 0) be a PMV -algebra, M=(M,⊕,′,0)
be an MV -algebra and the operation Φ : A × M −→ M be defined by
Φ(a, x) = ax, which satisfies the following axioms:
(AM1) if x+y is defined in M , then ax+ay is defined in M and a(x+y) =
ax+ ay,
(AM2) if a+b is defined in A, then ax+bx is defined in M and (a+b)x =
ax+ bx,
(AM3) (a.b)x = a(bx), for every a, b ∈ A and x, y ∈ M .
Then M is called a (left) MV -module over A or briefly an A-module. We
say that M is a unitary MV -module if A has a unit and
(AM4) 1Ax = x, for every x ∈ M .

Corollary 2.7. [7] Let M be a unitary A-module. If N ⊆ M is a
nonempty set, then we have:



On Injective MV -Modules 287

(N ] = {x ∈ M : x ≤ α1x1 ⊕α2x2 ⊕ · · · ⊕αnxn, for some x1, · · · , xn ∈ N,
α1, · · · , αn ∈ A}.

In particular, for a ∈ M , (a] = {x ∈ M : x ≤ n(αa), for some integer n ≥
0 and α ∈ A}.

Lemma 2.8. [5] Let A be a PMV -algebra and M be an A-module. Then
(a) 0x = 0, a0 = 0
(b) (na)x = a(nx), for any n ∈ N ,
(c) ax′ ≤ (ax)′,
(d) a′x ≤ (ax)′,
(e) (ax)′ = a′x+ (1x)′,
(f) x ≤ y implies ax ≤ ay,
(g) a ≤ b implies ax ≤ bx,
(h) a(x⊕ y) ≤ ax⊕ ay,
(i) d(ax, ay) ≤ ad(x, y),
(j) if x ≡I y, then ax ≡I ay, where I is an ideal of A,
(k) if M is a unitary MV -module, then (ax)′ = a′x+x′, for every a, b ∈ A
and x, y ∈ M .

Definition 2.9. [5] Let A be a PMV -algebra and M1, M2 be two A-
modules. A map f : M1 → M2 is called an A-module homomorphism
(or A-homomorphism, for short) if f is an MV -homomorphism and (H4):
f(ax) = af(x), for every x ∈ M1 and a ∈ A.

Definition 2.10. [5] Let A be a PMV -algebra and M be an A-module.
Then an ideal N ⊆ M is called an A-ideal of M if (I4): ax ∈ N , for every
a ∈ A and x ∈ N .

Definition 2.11. [10] Let M be a unitary A-module and there exists k ∈ N
such that

∑n

i=1 a
′

imi ≤ (
∑n

i=1 aimi)
′, for every 1 ≤ n ≤ k, ai ∈ A and

mi ∈ M . Then M is called an Ak-module. If
∑n

i=1 a
′

imi ≤ (
∑n

i=1 aimi)
′,

for every n ∈ N, then M is called an AN-module.

Lemma 2.12. [10] In PMV -algebra A, (α ⊕ β)a ≤ αm ⊕ βa, for every
α, β, a ∈ A.

3. Injective MV -modules

In the follows, let A be a PMV -algebra and M be an MV -algebra unless
otherewise specified.
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In this section, we present the definition of injective MV -modules and
we give some properties about them.

Definition 3.1. [8] Let M be an A-module. M is called an injective A-
module if for every m ∈ M and 0 6= a ∈ A, there exists c ∈ M such that
ac = m.

Example 3.2. Consider the real unit interval [0, 1]. Let x⊕ y = min{x+
y, 1} and x′ = 1 − x, for all x, y ∈ [0, 1]. Then ([0, 1],⊕,′ , 0) is an MV -
algebra, where “ + ” and “− ” are the ordinary operations in R. Also, the
rational numbers in [0, 1] and for each integer n ≥ 2, the n-element set

Ln = {0,
1

n− 1
, · · · ,

n− 2

n− 1
, 1}

yield examples of subalgebras of [0, 1] (See [3]). Now, by using this example,
we get some injective MV -modules.
(i) Consider ab = a.b, for every a, b ∈ L2, where “.” is ordinary operation
in R. Then (L2,⊕, .,′ , 0) is a PMV -algebra and L2 as L2-module is an
injective L2-module.
(ii) [0, 1] as L2-module is an injective L2-module.
(iii) Consider a.b = max{a, b}, for every a, b ∈ L3. Then it is routine to
show that (L3,⊕,′ , ., 0) is a PMV -algebra and by cosidering ab = a.b, we
have L3 is a L3-module. Moreover, L3 is an injective L3-module.

Definition 3.3. Let I be an ideal of M and a ∈ I. If every b ∈ I can be
showed as b = xa, for some x ∈ A, then we say I is an MV -principle ideal
of M , and we write I =≺ a ≻.

Example 3.4. Let A = {0, 1, 2, 3} and the operations “ ⊕ ” and “.” be
defined on A as follows:

⊕ 0 1 2 3
0 0 1 2 3
1 1 1 2 3
2 2 2 2 3
3 3 3 3 3

. 0 1 2 3
0 0 0 0 0
1 0 1 1 1
2 0 1 2 2
3 0 1 2 3

Consider 0′ = 3, 1′ = 2, 2′ = 1 and 3′ = 0. Then it is easy to show that
(A,⊕,′ , ., 0) is a PMV -algebra. Also I = {0, 1, 2} and J = {0, 1} are ideals
of A. Since 1 = 1.2, 2 = 2.2, I =≺ 2 ≻ is an MV -principle ideal of A.
Also, J =≺ 1 ≻ is an MV -principle ideal of A.
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Proposition 3.5. Let M be an A2-module, where M is a boolean algebra.
Then I = {xa : x ∈ A} is an MV -principle ideal of M , for every a ∈ M .

Proof: It is clear that 0 ∈ I. Let xa, ya ∈ I, for any x, y ∈ A. Since
x ≤ x ⊕ y and y ≤ x ⊕ y, by Lemma 2.8(f), we have ax ≤ a(x ⊕ y) and
ay ≤ a(x⊕y), for every a ∈ A and x, y ∈ M . So by Lemma 2.2(ii), we have
ax⊕ay ≤ a(x⊕ y)⊕ay and a(x⊕ y)⊕ay ≤ a(x⊕ y)⊕a(x⊕ y) = a(x⊕ y).
Hence, ax⊕ ay ≤ a(x⊕ y), for every a ∈ A and x, y ∈ M . Now, by Lemma
2.12, ax ⊕ ay = a(x ⊕ y) and so ax ⊕ ay ∈ I. Let t ≤ x.a ∈ I, for t ∈ M .
Then 1.t′ ⊕ x.a = 1 and so (t′ ⊕ a)′ ⊕ x′a = 0. It results that (t′ ⊕ a)′ = 0
and so t′ ⊕ a = 1. Hence we have

t= t∧xa=(t′⊕(t′⊕xa)′)′=(t′⊕(t′⊕a)′⊕x′a)′=(t′⊕x′a)′=(t′⊕a)′⊕xa=xa.

It means that t ∈ I. Therefore, I is an ideal of M . �

Note. We can consider A as A2-module. Then in proposition 3.5, I =
{x.a : x ∈ A} is an MV -principle ideal of A.

Definition 3.6. [10] Let M1 and M2 be two A-modules. Then the map
f : M1 → M2 is called an A′-homomorphism if and only if it satisfies in
(H1), (H3), (H4) and
(H ′2) : if x+ y is defined in M1, then h(x+ y) = h(x⊕ y) = h(x)⊕ h(y),
for every x, y ∈ M1, where “ + ” is the partial addition on M1. If h is one
to one (onto), then h is called an A′-monomorphism (epimorphism). If h
is onto and one to one, then h is called an A′-isomorphism and we write
M1

∼=′ M2.

Theorem 3.7. Let all ideals of A be MV -principle and M be an injec-
tive A-module. Then for every A-module C and every A′-homomorphism
α : C −→ M and A′-monomorphism µ : C −→ B, there is an A-
homomorphism β : B −→ M such that the diagram

C

µ

��

α // M

B

β

>>

is commutative, that is βµ = α.

Proof: Let M be an injective A-module, µ : D −→ B be an A′-mono-
morphism and α : D −→ M be an A-homomorphism, for MV -algebras D
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and B. With out lost of generality, let D be an A-ideal of B (because µ is
an A-monomorphism). Consider

Ω = {(Dj , αj) : D ⊆ Dj ⊆ B, αj : Dj −→ M, αj |D= α}.

Then by Zorn’s lemma, Ω has a maximal element (Dm, αm). We claim
that Dm = B. If Dm 6= B, then Dm  B and so there is b ∈ B such that
b /∈ D. Let I = {a ∈ A : ab ∈ Dm}. Since 0 ∈ I, we have I 6= ∅. We show
that I is an ideal of A. Let a1, a2 ∈ I. Then a1b, a2b ∈ Dm. By Lemma
2.12, (a1 ⊕ a2)b ≤ a1b⊕ a2b ∈ Dm and so a1 ⊕ a2 ∈ I. Now, let t ≤ a ∈ I,
for some t ∈ A. Then by Lemma 2.8 (g), tb ≤ ab ∈ Dm and so tb ∈ Dm. It
means that t ∈ I. Hence I is an ideal of A and so there is a0 ∈ A such that
I =≺ a0 ≻. If a0 = 0, then we consider an arbitrary element c ∈ M . If
a0 6= 0, then we consider a0b ∈ Dm and so m = αm(a0b) ∈ M . Since M is
an injective A-module, there is c ∈ M such that m = αm(a0b) = a0c. Now,
let DM = {am⊕ tb : t ∈ A, am ∈ Dm}. Since b /∈ Dm, we have Dm ⊂ DM .
We define αM : DM −→ M by

αM (am ⊕ tb) =






αm(am) + tc, if αm(am) + tc, am + tb are defined

0, otherwise

The first, we show that αM is well defined. It is sufficient that we show
αm(tb) = tc. Since tb ∈ Dm, we have t ∈ I and since I =≺ a0 ≻, there is
z ∈ A such that t = za0 and so

αm(tb) = αm(za0b) = zαm(a0b) = za0c = tc

The proof of (H1) is clear. If am1 + t1b+ am2 + t2b is defined, then

αM (am1
⊕ t1b)⊕ (am2

⊕ t2b)) = αM (am1
⊕ am2

⊕ t1b⊕ t2b)

= αM (am1 + am2 + t1b+ t2b)

= αM (am1 + am2 + (t1 + t2)b)

= αm(am1 + am2) + (t1 + t2)c

= αm(am1) + t1c⊕ αm(am2) + t2c

= αM (am1)⊕ αM (am2)

and so (H2)′ is true, for any am1 ⊕ t1b, am2 ⊕ t2b ∈ DM . By definition of
αm, for every am ⊕ tb ∈ DM , we have
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(αM (am ⊕ tb))′ = (αm(am)⊕ tc)′

= (αm(am)⊕ αm(tb))′

= (αm(am ⊕ tb))′

= αm((am)⊕ tb)′)

= αm((am)⊕ tb)′)⊕ 0

= αM ((am)⊕ tb)′ ⊕ 0) = αM ((am)⊕ tb)′)

and so (H3) is true. Now, for every a ∈ A and am ⊕ tb ∈ DM , we have

(αM (a(am ⊕ tb)) = αM (aam ⊕ (a.t)b)

= αm(aam)⊕ (a.t)c

= aαm(am)⊕ a(tc)

= a(αm(am)⊕ tc)

= aαM (am ⊕ tb)

and so (H4) is true. Hence αM is an A′-homomorphism and so (Dm, αm) "
(DM , αM ), which is a contradiction, by maximality of (Dm, αm). There-
fore, Dm = B. �

Example 3.8. [0,1] as L2-module satisfies in the conditions of Theorem 3.7.

Theorem 3.9. Every non cyclic L2-module can be embeded in an injective
L2-module.

Proof: Let M be a non cyclic L2-module. It is clear that M 6= 0 and so
there is 0 6= a ∈ M . Consider A-ideal (a] of M . We define α : (a] −→ [0, 1]

by α(x) = m
p

q
, where

p

q
∈ [0, 1] and by using of Corollary 2.7,

m = min{n | x ≤ n(βa), for some integer n ≥ 0 and β ∈ L2}

It is easy to see that α is well defined. We show that α is an MV -
homomorphism. Since α(0) = 0, (H1) is true. Let x1, x2 ∈ (a]. Then
m1 = min{n : x1 ≤ n(βa), for some integer n ≥ 0 and β ∈ L2} and
m2 = min{n : x2 ≤ n(βa), for some integer n ≥ 0 and β ∈ L2}. Let
m = m1 + m2 and q be the smallest common multiple of m,m1 and m2.
Then

α(x1⊕x2)=m
p

q
=(m1+m2)

p

q
=m1

p

q
+m2

p

q
=α(x1)+α(x2)=α(x1)⊕α(x2)
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and so (H2) is true. Now, let
s

g
∈ [0, 1] and x ∈ (a]. Since x ≤ n(βa),

for some integer n ≥ 0 and β ∈ L2, by Lemma 2.8 (b) and (f), we have
s

g
x ≤

s

g
(n(βa)) = (n

s

g
)(βa) and so m = k

s

g
, where

k = min{n |
s

g
x ≤ n(

s

g
)(βa), for some integer n ≥ 0 and β ∈ L2}

Hence α(
s

g
x) = m

p1
q1

= k
s

g

p1
q1

, where q1|k. On the other hand,
s

g
α(x) =

s

g
k
p1
q1

and so (H4) is true. Since M is not cyclic, 1 /∈ (a] and so x′ /∈

(a], for every x ∈ (a]. It means that (H3) is true. Hence α is an MV -
homomorphism. If we consider the inclusion map µ : (a] −→ M , then by
Example 3.8 and Theorem 3.7, the following diagram

(a]

µ

��

α // [0, 1]

M

β

<<

is commutative, that is βµ = α. It is routine to see that β is an A-
monomorphism. Hence M is embeded in an injective L2-module. �

Open Problem. Under what suitable an A-module can be embeded in
an injective A-module?

Theorem 3.10. Let A be unital, a.b = b implies that a = 1, for every a, b ∈
A and for every A-module C, every A′-homomorphism α : C −→ M and
A′-monomorphism µ : C −→ B there is an A-homomorphism β : B −→ M
such that the diagram

C

µ

��

α // M

B

β

>>

is commutative, that is βµ = α. Then M is an injective A-module.

Proof: Let for every A-module C and every A′-homomorphism α : C −→
M and A′-monomorphism µ : C −→ B there is an A-homomorphism β :
B −→ M such that βµ = α. Also, let m ∈ M and 0 6= a ∈ A. Consider
α : A −→ M by α(1) = m (or α(t) = tm) and µ : A −→ A by µ(1) = a
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(or µ(t) = ta), for every t ∈ A. It is easy to see that α and µ are A′-
homomorphism. Let x ∈ kerµ. Then µ(x) = xa = 0 and so x′a ⊕ a′ =
1. It means that a ≤ x′a ≤ a and so x′a = a. Hence x′ = 1 and so
x = 0. It results that kerµ = {0} and so by Lemma 2.3 (ii), µ is an
A′-monomorphism. Then by hypothesis, there is an A-homomorphism β :
A −→ M such that βµ = α. Since A is an A-module, we have

m = α(1) = βµ(1) = β(µ(1)) = β(a) = β(a1) = aβ(1).

Now, consider c = β(1) and so M is an injective A-module. �

Example 3.11. The example 3.4 satisfies in the condition : a.b = b implies
that a = 1, for every a, b ∈ A (note that 1A = 3).

Lemma 3.12. Every A′-homomorphism f : I −→ Q extends to an A′-
homomorphism F : A −→ Q, for any ideal I of A if and only if for every A′-
homomorphisms f : M −→ N and g : M −→ Q, there is A-homomorphism
ϕ : N −→ Q such that the diagram

M

f

��

g
// Q

N

ϕ

>>

is commutative, that is ϕf = g.

Proof: (⇒) Let Ω = {(C, φ) : M ⊆ C ⊆ N, φ : C −→ Q, φ |M= g}. A
routine application of Zorn’s lemma shows that Ω has a maximal element
(D,ϕ). We show that D = N and therefore ϕ would be required extension
of g. Let n ∈ N . Then by the proof of Theorem 3.7, In = {a ∈ A : an ∈ D}
is an ideal of A. Define α : In −→ Q by α(a) = ϕ(an). Note that

α(a′)=ϕ(a′n)=(ϕ(an+n′))′=(ϕ(an)+ϕ(n′))′=(α(a)+(α(1))′)′=(α(a))′.

Hence (H ′) is true. The proof of (H1), (H3) and (H4) are routine. Then α
is an A′-homomorphism and so α extends to A′-homomorphism β : In −→
Q. Define ϕ′ : D⊕An −→ Q by ϕ′(d⊕ an) = ϕ(d)⊕ β(a), for every d ∈ D
and a ∈ A. Since β(a) = α(a) = ϕ(an), for every a ∈ In and β(a) = φ(an),
for every a ∈ In, we conclude that ϕ

′ is well defined. It is routine to see that
ϕ′ is an A′-homomorphism. Since (D,ϕ) ≤ (D ⊕ An,ϕ′), by maximality
(D,ϕ), we have D = D ⊕An and so D = N .
(⇐) The proof is clear. �
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Theorem 3.13. Let A be unital, all ideals of A be principle and a.b = 1
implies that a = 1, for every a, b ∈ A. Then M is an injective A-module.

Proof: Let I be an ideal of A and f : I =≺ a ≻−→ M be an A′-
homomorphism. Define F : A −→ M by F (x) = f(x.a). It is clear that
F is well defined. We show that F is an A′-homomorphism. The proofs of
(H1) and (H ′

2) are routine. We have

F (x′) = f(x′.a) = (f(x.a+ a′))′ = (f(x.a) + f(a′))′ =

= (F (x) + (f(a))′)′ = (F (x) + (F (1))′)′ = (F (x))′.

Therefore, F is an A′-homomorphism and so by Lemma 3.12 and Theorem
3.10, M is an injective A-module. �

4. Essential extensions

In this section, we define the notions of essential A-homomorphisms and
essential extension of an A-homomorphism, where A is a PMV -algebra
and we obtain more results on them. Then by these notions, we obtain
some results on injective MV -modules.

Definition 4.1. Let µ : M −→ B be an A′-monomorphism such that
µ(M) ∩H 6= {0}, for every no zero A-ideal H of B. Then µ is called an
essential A-homomorphism. In special case, if M is an A-ideal of B (µ is
inclusion map), then B is called an essential extension of µ.

Proposition 4.2. [9] Let A be a PMV -algebra. Then Σn
i=1A is a PMV -

algebra.

Example 4.3. By Proposition 4.2, A⊕A is an MV -algebra. If operation
• : A × (A ⊕ A) −→ (A ⊕ A) is defined by a • (b, c) = (a.b, a.c), for every
a, b, c ∈ A, then it is easy to show that A ⊕ A is an A-module. consider
A = L2 and φ : A⊕ A −→ L4, where φ(1, 0) = 1

3 , φ(0, 1) =
2
3 , φ(0, 0) = 0

and φ(1, 1) = 1. Then it is clear that φ is well defined. It is easy to show
that φ is an A′-homomorphism. Since φ(L2 ⊕ L2) = L4, φ is an essential
A-homomorphisms.

Theorem 4.4. Let M be an A-module and B be an A-ideal of M . Then
M is an essential extension of B if and only if for every 0 6= b ∈ M , there
exist a ∈ A and c ∈ B such that c ≤ n(ab), for some integer n.

Proof: (⇒) Let M be an essential extension of B and 0 6= b ∈ M . Then
H = (b] is a non zero A-ideal of M and so B∩H 6= {0}. It results that there
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exists 0 6= c ∈ M ∩H. Since c ∈ H, there is a ∈ A such that c ≤ n(ab), for
some integer n.
(⇐) Let for every 0 6= b ∈ M , there exists a ∈ A and c ∈ B such that
c ≤ n(ab), for some integer n. Also, let H be a non zero A-ideal of M .
Then there is 0 6= b ∈ H such that c ≤ n(ab) ∈ H and so c ∈ H. Hence
B ∩H 6= {0} and so B is an essential extension of B. �

Proposition 4.5. Let M be an A-module and B be a non zero A-ideal of
M . Then there is a maximal essential extension E of B such that B ⊆
E ⊆ M .

Proof: Let

K = {Ci | Ci is an A− ideal of M that is an essential extension of B}

Since B ∈ K, K 6= 0. For every chain {Ci}i∈I of elements of K, C =⋃
i∈I Ci is an A-ideal of M . Now, let b ∈ B. Since Ci is an essential

extension of B, there are a ∈ A and c ∈ Ci such that c ≤ n(ab), for every
i ∈ I and for some integer n. Hence, for every b ∈ B, there are a ∈ A
and c ∈ C such that c ≤ n(ab) and so by Theorem 4.4, C is an essential
extension of B. Now, by Zorn’s Lemma, K has a maximal elements as E
that is essential extension of B inclusion in M . �

In the follow, we will show that every maximal essential extension of
an A-ideal of injective A-module I is injective if it was included in I. The
first we prove the following lemma that we call the short five lemma and
its corollaries in MV -modules:
Definition 4.6. Let {Mi}i∈I be a family of A-modules and {fi : Mi →
Mi+1 : i ∈ I} be a family of A-module homomorphism. Then

· · · → Mi−1
fi−1

→ Mi
fi→ Mi+1 → · · ·

is exact if Imfi = Kerfi+1, for every i ∈ I. In special case,

0 → M1
f1→ M2

g1
→ M3 → 0

is called a short exact sequence.
Example 4.7. (i) Let M be an A-module and N be an A-ideal of M . Then

0 → N
⊆
→ M

π
→

M

N
→ 0

is a short exact sequence.
(ii) Let f : M1 → M2 be an A-module homomorphism. Then
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0 → Kerf
⊆
→ M1

π
→

M1

Kerf
→ 0

is a short exact sequence.

Lemma 4.8. (i) Let

0 → A1
f1→ B1

g1
→ C1 → 0

and

0 → A2
f2→ B2

g2
→ C2 → 0

be two exact sequences of A-modules, α : A1 → A2 and γ : C1 → C2 be
A-isomorphism, β : B1 → B2 be an A-homomorphism, β ◦ f1 = f2 ◦ α and
γ ◦ g1 = g2 ◦ β. Then β is an A-isomorphism.
(ii) For the short exact sequence

0 → A1
f
→ B

g
→ A2 → 0

of A-modules, if there is an A-homomorphism k : B → A1 such that kf = I
(I is identity map), then B ≃ A1 ⊕ A2, where A1 ⊕ A2 = {a1 ⊕ a2 : a1 ∈
A1, a2 ∈ A2} ( we say 0 → A1 →f B →g A2 → 0 is split exact).
(iii) If J is a unitary A-module, then J is an injective A-module if and
only if every short exact sequence

0 → J → T → B → 0

of A-modules is split exact.

Proof: (i) It is routine to see that β is an A-monomorphism. We show
that β is an A-epimorphism. Consider arbitrary element x ∈ B2. Then
g2(x) ∈ C2 and so there is z ∈ C1 such that γ(z) = g2(x). Since g1 is an A-
epimorphism, there is b1 ∈ B1 such that g1(b1) = z and so γg1(b1) = g2(x).
It results that g2β(b1) = g2(x) and so by Lemma 2.3, β(b1)⊖ x ∈ Kerg2 =
Imgf2. Hence there is a ∈ A2 such that f2(a) = β(b1) ⊖ x. Since a ∈ A2,
there is d ∈ A1 such that α(d) = a and so f2α(d) = β(b1) ⊖ x. It results
that β(f1(d)) = β(b1)⊖ x. Now, let y = b1 ⊖ f1(d). Then

β(y) = β((b′1 ⊕ f1(d))
′) = (β(b′1 ⊕ f1(d)))

′ = (β(b′1)⊕ β(f1(d)))
′ =

(β(b′1)⊕ β(b1)⊖ x)′ = (1⊖ x)′ = x.

Therefore, β is an A-epimorphism and so β is an A-isomorphism.
(ii), (iii) The proofs are routine. �
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Theorem 4.9. Let I be an injective A-module, B be an A-ideal of I and
E be a maximal essential extension of B such that E ⊆ I. Then E is an
injective A-module.

Proof: Let

D = {H : H is an A− ideal of I,H ∩ E = {0}}

Since {0} ∈ D, we have D 6= ∅. By Zorn’s Lemma, D has maximal element
H ′. Then H ′ ∩ E = {0}. Now, consider the mapping π : I −→ I

H′
. If

δ = π |E , then δ is an A-monomorphism. We show that δ is an essential
monomorphism. Consider A-ideal K

H′
of I

H′
, where H ′ ⊂ K (It is not

possible K = H ′). Then there is 0 6= b ∈ K ∩ E and b /∈ H ′ and so
δ(b) = b

H′
6= 0

H′
. It means that δ(E) ∩ K

H′
6= {0} and so δ is an essential

extension of E. Since E can not accept any essential A-monomorphism
except trivial A-monomorphism, δ : E −→ I

E′
is an A-isomorphism. Now,

consider the exact sequence

0 → H ′ ⊆
→ I

δ−1π
→ E → 0

If f : E −→ I be conclusion mapping, then δ−1πf(a) = δ−1π(a) =
δ−1( a

H′
) = a, for every a ∈ I. Hence δ−1πf = IE and so by Lemma

4.8 (iii), the above sequence is a split exact sequence. It results that
I ≃ E ⊕H ′. Since I is an injective A-module, E is an injective A-module,
too. �

5. Conclusion

The categorical equivalence between MV -algebras and lu-groups leads to
the problem of defining a product operation on MV -algebras, in order
to obtain structures corresponding to l-rings. In fact, by defining MV -
modules, MV -algebras were extended. Hence, MV -modules are funda-
mental notions in algebra. IN 2016, free MV -modules were defined [10].
We introduced injective MV -modules and obtained some essential proper-
ties in this field. The obtained results encourage us to continue this long
way. It seems that one can introduces notion of projective MV -module
and obtain the relationship between free MV -modules and projective (or
injective) MV -modules. In fact, there are many questions in this field that
should be verified.
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