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Abstract
The Wigner functions for the coherent states of a particle on a circle are dis-
cussed. The nontrivial analytic forms of these functions are derived. The clas-
sicality of the circular coherent states existing in the literature as well as the
new ones constructed by means of the Fourier transformation of the Gaussian
is compared based on negativity of the Wigner function.
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1. Introduction

In spite of a long history of research into Wigner functions and their importance in quantum
optics the theory of these functions in the case of the quantum mechanics on a manifold with
non-trivial topology can hardly be called complete. In this work we calculate and compare the
Wigner functions in the circular coherent states for the quantum mechanics on a ring. More
precisely, the two specific coherent states defined earlier by us and other authors that we refer
to as the ‘Gaussian coherent states on the circle’ and ‘circular squeezed states’, respectively
as well as the new ones introduced herein called by us the ‘Gaussian–Fourier coherent states’.
The motivation for the investigation of the quantum rotational motion is, among others, its
important role in atomic and molecular physics. On the other hand, there are numerous exam-
ples of applications of coherent states including quantum optics, atomic physics, condensed
matter physics, quantum gravity and quantum information theory. Using the Wigner functions
for the discussed coherent states we investigate the classicality of these states. As well known,
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the most important property of coherent states is that they can be regarded from the physical
point of view as the states closest to the classical ones and it is plausible to treat the most clas-
sical coherent states as the best ones. In the case of the standard coherent states for a particle
on a line such closeness is described by minimization of the Heisenberg uncertainty relations
determining up to a unitary transformation the coherent states. In opposition to the case of the
quantum mechanics on a line there are no generally accepted uncertainty relations for a particle
on a circle. Therefore, we have decided in this work to utilize the Wigner function as an indica-
tor of classicality of the coherent states for the quantum mechanics on a circle. More precisely,
our criterion is the negativity of the Wigner function used as a measure of their non-classicality.
We recall that the Wigner function for the standard coherent states is nonnegative. This is an
example of application of the Hudson theorem [1]. Nevertheless, this is not the case for the
coherent states on a circle. Indeed, the only pure states of a quantum particle on a circle with
non-negative Wigner function are the eigenstates of the angular momentum [2]. The paper is
organized as follows. In section 2 we recall the basic facts about the quantum mechanics on a
circle. Section 3 is devoted to the short review of properties of the Wigner function for a parti-
cle on a circle. Section 4 deals with the circular squeezed states and the corresponding Wigner
function. In section 5 we discuss the coherent states called by us the Gaussian circular coherent
states and the Wigner function for these states. The starting point of section 6 are the coherent
states discussed in reference [3]. Because of the problems with definition of the Wigner func-
tion in these states we introduce the new ones that we refer to as the Gaussian–Fourier coherent
states and analyze the corresponding Wigner function. Section 7 is devoted to comparison of
classicality of the coherent states for the quantum mechanics on a circle choosing as a criterion
the negativity of their corresponding Wigner function.

2. Quantum mechanics on a circle

We now collect the basic facts about the quantum mechanics on a circle. The algebra adequate
for the study of a quantum particle on a circle is the e(2) algebra.

[J, X1] = iX2, [J, X2] = −iX1, [X1, X2] = 0, (2.1)

where J is the Hermitian angular momentum operator, X1 and X2 are the Hermitian position
observables on a circle and we set � = 1. Indeed, the algebra (2.1) has the Casimir operator
given in a unitary irreducible representation by

X2
1 + X2

2 = r2. (2.2)

The e(2) algebra can be written by means of the unitary operator U representing the position
of a particle on a unit circle as

[J, U] = U, (2.3)

where X1 = r(U + U†)/2 and X2 = r(U − U†)/2i.
Consider the eigenvalue equation

J| j〉 = j| j〉. (2.4)

The eigenvalue j is of the form j = k + λ, where k is integer and λ ∈ [0, 1). Demanding the
time-reversal invariance of the algebra (2.3) we find that λ = 0 or λ = 1

2 , so j is integer or half-
integer, respectively [4]. We assume in the sequel that j is integer. Of course, the eigenvectors
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| j〉 form an orthogonal and complete set, so

〈 j|k〉 = δi j, (2.5a)

∞∑
j=−∞

| j〉〈 j| = I. (2.5b)

The operators U and U† act on the vectors | j〉 as the ladder ones. We have

U| j〉 = | j + 1〉, U†| j〉 = | j − 1〉. (2.6)

Consider now the eigenvalue equation

U|ϕ〉 = eiϕ|ϕ〉. (2.7)

We point out that we have formally U = eiϕ̂, where ϕ̂ is the angle operator defined by

ϕ̂|ϕ〉 = ϕ|ϕ〉. (2.8)

Nevertheless, it must be borne in mind that in opposition to the unitary operator U, the operator
ϕ̂ is problematic. The vectors |ϕ〉 satisfy the orthogonality conditions

〈ϕ|ϕ′〉 = 2πδ(ϕ− ϕ′), (2.9)

where ϕ− ϕ′ ∈ [−π, π). They form the complete set, namely

1
2π

∫ π

−π

dϕ|ϕ〉〈ϕ| = I. (2.10)

The resolution of the identity (2.10) gives rise to the functional coordinate representation L2(S1)
for the quantum mechanics on a circle specified by the scalar product

〈 f |g〉 = 1
2π

∫ π

−π

dϕ f ∗(ϕ)g(ϕ), (2.11)

where f (ϕ) = 〈ϕ| f 〉. The operators J and U act in the representation (2.11) as follows

J f (ϕ) = −i
d

dϕ
f (ϕ), U f (ϕ) = ei ϕ f (ϕ). (2.12)

The basis vectors | j〉 are represented in the Hilbert space with the scalar product (2.11) by the
functions

〈ϕ| j〉 = ei jϕ. (2.13)

Hence, using the completeness condition (2.5b) we find

f (ϕ) = 〈ϕ| f 〉 =
∞∑

j=−∞
f j ei jϕ, (2.14)

where f j = 〈 j| f 〉. Of course (2.14) is the Fourier series expansion of the function f (ϕ). There-
fore the elements of the Hilbert space L2(S1) specified by the scalar product (2.11) are in the

3
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discussed case of the integer eigenvalues j of the angular momentum operator J, 2π-periodic
functions. On the other hand, (2.5b), (2.9) and (2.13) taken together yield

1
2π

∞∑
j=−∞

ei jϕ = δ(ϕ), (2.15)

where ϕ ∈ [−π, π)

3. Wigner function for a particle on a circle

Our purpose in this section is to discuss the basic properties of the Wigner function for the
quantum mechanics on a circle. The generally accepted definition of the Wigner function in
the position representation W f for the pair angle ϕ and orbital momentum l and a state f (ϕ) is
of the form

Wf(l,ϕ) =
1

2π

∫ π

−π

dθ f ∗
(
ϕ− θ

2

)
f

(
ϕ+

θ

2

)
e−iθl. (3.1)

Nevertheless, some authors interpret W f(l,ϕ) as a function on the classical phase space that is
the cylinder S1 × R [5], while others consider W f(l,ϕ) as a function on a partially quantized
space S1 × Z, where Z is the set of integers, and assume that l is discrete (see for example
reference [6]). We point out that the formula (3.1) was derived by means of different meth-
ods such as the group-theoretical one based on the analysis of representations of the E(2)
group [5], the Weyl–Wigner–Moyal formalism [6] and as a special case of the general con-
struction of the Wigner function for the n-dimensional sphere Sn utilizing the solutions of
the Laplace–Beltrami equations for spheres [7]. We have the marginal position distribution
reproduced by the Wigner function such that

∫ ∞

−∞
dl Wf(l,ϕ) = | f (ϕ)|2 (3.2)

in the case of continuous l, and for discrete l

∞∑
l=−∞

Wf(l,ϕ) = | f (ϕ)|2 (3.3)

following directly from (2.15) and (3.1). Thus, it turns out that the marginal position space
probability density is given by the same formula whether l is continuous or discrete. Further,
using the resolution of the identity (2.5b) and (2.13) we find the marginal for the momentum
space probability density

1
2π

∫ π

−π

dϕWf(l,ϕ) =
∞∑

j=−∞
| f j|2sincπ( j − l), (3.4)

where sinc is the sinus cardinalis function defined by

sinc x =

⎧⎨
⎩

sin x
x

for x �= 0

1 for x = 0
(3.5)
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and we utilized the identity

sincπx =
1

2π

∫ π

−π

dθ eixθ. (3.6)

Obviously, for integer l the formula (3.4) reduces to

1
2π

∫ π

−π

dϕWf(l,ϕ) = | fl|2, (3.7)

so the marginal has the same form as for the quantum mechanics on a real line. In the case
of continuous l an interesting interpretation of the right-hand side of (3.4) was provided by
Kastrup [5] as an example of the Whittaker cardinal function interpolating the different discrete
values | f j|2. Now, an immediate consequence of (3.6) is the relation∫ ∞

−∞
sincπ(x − a) = 1. (3.8)

On the other hand, (3.6) and (2.15) taken together yield

∞∑
j=−∞

sinc π( j − k) = 1. (3.9)

From (3.2) it follows that we have the normalization condition∫ ∞

−∞
dl

1
2π

∫ π

−π

dϕWf(l,ϕ) = 1. (3.10)

For integer l we get with the use of (3.3)

∞∑
l=−∞

1
2π

∫ π

−π

dϕWf(l,ϕ) = 1. (3.11)

We now discuss the Wigner function in the momentum representation

W(l,ϕ) =
∞∑

j=−∞

∞∑
k=−∞

f ∗j f k ei(k− j)ϕsinc π

(
j + k

2
− l

)
(3.12)

following directly from (3.1), (2.5b), (2.13) and (3.6). On introducing in (3.12) the new sum-
mation indices k − j and j + k we find after some calculation that we can write (3.12) in the
form

W(l,ϕ) =
∞∑

j=−∞

∞∑
k=−∞

f ∗k− j f k+ j e2i jϕsincπ(k − l)

+

∞∑
j=−∞

∞∑
k=−∞

f ∗k− j f k+ j+1 ei(2 j+1)ϕsincπ

(
k − l +

1
2

)
. (3.13)

In the case of integer l (3.13) reduces to

W(l,ϕ) =
∞∑

j=−∞
f ∗l− j fl+ j e2i jϕ +

1
π

∞∑
j=−∞

∞∑
k=−∞

f ∗l− j+k fl+ j+k+1
(−1)k

k + 1
2

ei(2 j+1)ϕ. (3.14)

Notice that the first sum from the right-hand side of (3.14) has the structure similar to the
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Wigner function for a particle on a line in momentum representation. Up to normalization
constant the formula (3.14) was derived from the quantizer kernel in reference [6], where the
general Wigner function for the quantum mechanics on a circle was considered in the states
described by the density matrix.

We finally write down the inequality satisfied by the Wigner function (3.1)

|Wf(l,ϕ)| � 2 (3.15)

following directly from (3.1), the Schwarz inequality and the inequality satisfied by an arbitrary
nonnegative 2π-periodic function

∫ π
2 +α

− π
2 +α

dϕ g(ϕ) �
∫ π

−π

dϕ g(ϕ), (3.16)

where α is an arbitrary constant. The inequality (3.16) is obvious in view of the identity

∫ π

−π

dϕ g(ϕ) =
∫ π+α

−π+α

dϕ g(ϕ) (3.17)

that holds for an arbitrary 2π-periodic function and arbitrary α.

4. Wigner function for the circular squeezed states

4.1. Circular squeezed states

We begin with a brief account of the circular squeezed states [8, 9]. Consider the following
form of the e(2) algebra obtained from (2.3) by the formal identification U = eiϕ̂

[J, cos ϕ̂] = i sin ϕ̂, [J, sin ϕ̂] = −i cos ϕ̂, [sin ϕ̂, cos ϕ̂] = 0. (4.1)

The algebra (4.1) implies the uncertainty relations of the form

ΔJΔ cos ϕ̂ � 1
2
| 〈sin ϕ̂〉 |, (4.2a)

ΔJΔ sin ϕ̂ � 1
2
| 〈cos ϕ̂〉 |, (4.2b)

Δ sin ϕ̂Δ cos ϕ̂ � 0. (4.2c)

The circular coherent states are defined as the states minimizing (4.2b) with ϕ̂ replaced by
ϕ̂− α. In the position representation L2(S1) these states are given by

f s
α,m(ϕ) =

1√
I0(2s)

exp[s cos(ϕ− α) + im(ϕ− α)], (4.3)

where the packet is peaked at ϕ = α, m is the counterpart of the classical momentum, and Iν(x)
designates the modified Bessel function of the first kind. The real parameter s � 0 representing
the angular momentum spread [9] is given by

s =
ΔJ

Δ sin(ϕ̂− α)
=

| 〈cos(ϕ̂− α)〉 |
2[Δ sin(ϕ̂− α))]2

. (4.4)

6
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Let f s
m,α(ϕ) = 〈ϕ|m,α〉s. The projection of the abstract coherent states |α, m〉s onto the basis

spanned by the eigenvectors | j〉 of the angular momentum operator J is

〈 j|m,α〉s =
e−iα j

√
I0(2s)

Im− j(s), (4.5)

where the use was made of (2.10) and the identity [10]

In(x) =
1

2π

∫ π

−π

dθ ex cos θ einθ =
1

2π

∫ π

−π

dθ ex cos(θ−a) ein(θ−a), (4.6)

where n is integer. The circular squeezed states are not orthogonal. Using (4.5) and the identity
[11]

∞∑
k=−∞

eikaJk(w)Jk+ν(z) =

(
z − w e−ia

z − w eia

) ν
2

Jν(
√
w2 + z2 − 2wz cos a), (4.7)

where |we±ia| < |z| for ν �= 0, ±1, ±2, . . . , and the Bessel function of the first kind Jk(z)
with the integer order k is related to the modified Bessel function of the first kind Ik(z) by
Ik(z) = 1

ik
Jk(z), we get

s〈m,α|m′,α′〉s′ =
eim(α−α′)

√
I0(2s)I0(2s′)

(
s′ + s e−i(α′−α)

s′ + s ei(α′−α)

)m′−m
2

× Im′−m

(√
s2 + s′2 + 2ss′ cos(α′ − α)

)
. (4.8)

For s′ = s the formula (4.8) reduces to

s〈m,α|m′,α′〉s =
e

i
2 (α−α′)(m+m′)

I0(2s)
Im′−m

(
2s| cos

α′ − α

2
|
)
. (4.9)

The authors did not find the formulas (4.8) and (4.9) for the overlap of the circular squeezed
states in the literature. Furthermore, another consequence of (4.5), (4.7) and the relation
Ik(z) = 1

ik
Jk(z) is the completeness (over completeness) of the circular coherent states. Namely,

the resolution of the identity for these states is of the form

∞∑
m=−∞

1
2π

∫ π

−π

dα|m,α〉ss〈m,α| = I. (4.10)

We now discuss the average values of the observables in the circular coherent states. An
immediate consequence of (4.6), (4.3) and the first equation of (2.12) is

s〈m,α| J |m,α〉s = m, (4.11)

so, as mentioned earlier m is the parameter that can be regarded as a counterpart of the classical
orbital momentum. Nevertheless, by virtue of (4.3) m, in opposition to the classical angular
momentum can take only discrete values in the considered case of the Hilbert space of 2π-
periodic functions. On the other hand, taking into account (2.7), (2.10), (4.3) and (4.6) we
arrive at the formula

s〈m,α|U |m,α〉s = eiα I1(2s)
I0(2s)

. (4.12)

7
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On introducing the relative expectation value

s〈〈m,α|U |m,α〉〉s =
s〈m,α|U |m,α〉s

s〈0, 0|U |0, 0〉s

(4.13)

we arrive at the relation

s〈〈m,α|U |m,α〉〉s = eiα. (4.14)

It follows from (4.11) and (4.14) that up to discreteness of m the states |m,α〉s are
parametrized by the points of the classical phase space. Nevertheless, in opposition to the stan-
dard coherent states for a particle on a line the states |m,α〉s are labeled by the extra parameter
s controlling the angular spread of the packet (4.3). On the other hand, it is not clear what is
the counterpart of the Bose annihilation operator whose eigenvectors are the circular coherent
states (4.3). We finally remark that the discussed circular squeezed states were applied in the
study of the Rydberg wave packets [9].

4.2. Wigner function for the circular squeezed states

Our purpose now is to study the Wigner function for the circular squeezed states. From (3.1)
and (4.3) we get

Ws
α,m(l,ϕ) =

1
πI0(2s)

∫ π

0
dθ exp

[
2s cos(ϕ− α) cos

θ

2

]
cos[θ(l − m)]. (4.15)

The Wigner function (4.15) was introduced and investigated for the first time by Kastrup [5]
who considered the general case of arbitrary l and m, and checked consistency of the formulas
(3.4) and (4.5). We now derive the analytic expression of the Wigner function (4.15) for integer
l and m in terms of the finite series of special functions. We begin by writing (4.15) in the form

Ws
α,m(l,ϕ) =

2
πI0(2s)

∫ π
2

0
dϑ exp[2s cos(ϕ− α) cos ϑ] cos[2ϑ(l − m)]. (4.16)

On using the identity [12]

cos 2nx =

n∑
k=0

(−1)k22n−2k−1 2n
k!

(2n − k − 1)!
(2n − 2k)!

cos2n−2kx, (4.17)

where n � 1, substituting in (4.16) cosϑ = x and utilizing the integral [12]∫ u

0
x2ν−1(u2 − x2)ρ−1eμx dx

=
1
2

B(ν, ρ)u2ν+2ρ−2
1F2

(
ν;

1
2

, ν + ρ;
μ2u2

4

)

+
μ

2
B

(
ν +

1
2

, ρ

)
u2ν+2ρ−1

× 1F2

(
ν +

1
2

;
3
2

, ν + ρ+
1
2

;
μ2u2

4

)
, Re ρ > 0, Re ν > 0, (4.18)

8
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where B(x, y) is the Euler beta function, 1F2(α;β1, β2; z) is the generalized hypergeometric
function and we set u = 1, ν = |l − m| − k + 1

2 , ρ = 1
2 and μ = 2s cos(ϕ− α), we get for

l �= m

Ws
α,m(l,ϕ) =

1
πI0(2s)

|l−m|∑
k=0

(−1)k22|l−m|−2k−1 2|l − m|
k!

(2|l − m| − k − 1)!
(2|l − m| − 2k)!

×
[

B

(
|l − m| − k +

1
2

,
1
2

)

× 1F2

(
|l − m| − k +

1
2

;
1
2

, |l − m| − k + 1, s2 cos2(ϕ− α)

)

+ 2s cos(ϕ− α)B

(
|l − m| − k + 1,

1
2

)

× 1F2

(
|l − m| − k + 1;

3
2

, |l − m| − k +
3
2

, s2 cos2(ϕ− α)

)]
. (4.19)

Taking into account (4.16) and the identity∫ π
2

0
ea cos θ dθ =

π

2
[I0(a) + L0(a)] , (4.20)

where Lν (x) is the modified Struve function, following directly from the first equation of (4.6)
and the relation [12]

Lν(z) =
2
(

z
2

)ν
√
πΓ

(
ν + 1

2

)∫ π
2

0
sinh(z cos ϕ)(sin ϕ)2νdϕ, Reν > −1

2
, (4.21)

we find for l = m

Ws
α,m(l,ϕ) =

1
I0(2s)

(I0[2s cos(ϕ− α)] + L0[2s cos(ϕ− α)]), (4.22)

As far as we are aware the formulas (4.19) and (4.22) are new.
The plot of the Wigner function (4.15) is shown in figure 1 (top left). In opposition to the

standard coherent states for a particle on a line, the Wigner function (4.15) can take negative
values. Such behavior is depicted in figure 1 (top right and bottom left).

We now recall that the Wigner function for the standard coherent states:

φx̄ ,̄p(x) = π− 1
4 e−

1
2 (x−x̄)2+ixp̄ (4.23)

such that

Wx̄ ,̄p(x, p) =
1
π

e−(x−x̄)2
e−(p− p̄)2

(4.24)

is peaked at x = x̄ and p = p̄, where x̄ and p̄ are the average position and momentum
parametrizing the coherent state, respectively. It turns out that the same holds true for the dis-
cussed Wigner function in the circular coherent state (4.15) which has maximum at l = m and
ϕ = α (see figure 1, bottom right). We remark that the maximum value of the Wigner function
for integer m can be immediately obtained from (4.22) by setting ϕ = α, so

Ws
max = 1 +

L0(2s)
I0(2s)

. (4.25)

9
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Figure 1. Top left: the plot of the Wigner function for the circular coherent states (4.11)
with s = 1.26 (see (7.3) and (7.7)), m = 1 and α = π/3 for the all panels. Top right:
negativity of the Wigner function (4.15) in 3D presentation. Bottom left: the contour plot
of the Wigner function (4.15). The regions of the negative Wigner function are bounded
by contour levels 0. Bottom right: the contour plot of the Wigner function (4.15). The
maximum of the Wigner function at l = m and ϕ = α, where m = 1 and α = π

3 is easily
seen.

Observe that the maximum value of the Wigner function is only the function of the squeez-
ing parameter s. We point out that the maximum value of the Wigner function (4.24) for the
standard coherent states also does not depend on parameters x̄ and p̄ labeling these states.

5. Wigner function for the Gaussian coherent states of a particle on a circle

5.1. Gaussian coherent states for the quantum mechanics on a circle

The Gaussian coherent states can be defined as the solution of the eigenvalue equation [4]

Z|z〉 = z|z〉, (5.1)

where Z = e−J+ 1
2 U, and the complex number z = e−m+iα parametrizes the circular cylinder

which is the classical phase space for a particle on a circle, so m is the classical angular momen-
tum and α is the classical angle. We shall use in the sequel the designation |z〉 ≡ |m,α〉. The

10
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L2(S1) representation of the (normalized) states |m,α〉 is given by

fm,α(ϕ) =
θ3

(
1

2π (ϕ− α− im)| i
2π

)√
θ3

(
im
π
| i
π

) , (5.2)

where fm,α(ϕ) = 〈ϕ|m,α〉 and θ3(v|τ ) is the Jacobi theta function defined by

θ3(v|τ ) =
∞∑

j=−∞
q j2 (eiπv)2 j, (5.3)

where q = eiπτ and Im τ > 0. It should be noted that fm,α(ϕ) is a 2π-periodic function of the
angle ϕ. Using the easily proven identity [13]

θ3(v + mτ |τ ) = q−m2
e−2iπmvθ3(v|τ ), (5.4)

where m is integer, we find that for discrete m the relation (5.2) can be written in the form

fm,α(ϕ) = ei(ϕ−α)m θ3( 1
2π (ϕ− α)| i

2π )√
θ3

(
0| i

π

) , m ∈ Z. (5.5)

Our motivation to use the (nonstandard) denomination ‘Gaussian’ for the coherent states
defined by (5.1) was actuated by the alternative method of construction of these states based on
the Zak transform [14]. We now present a simple version of this method in the case of integer
parameter m labeling the coherent states. We first observe that in analogy with the standard
coherent states for a particle on a line the vacuum vector g0,0(ϕ) should be annihilated by the
operator (‘annihilation operator’) ϕ̂+ iJ (the mathematically sound condition is ei(ϕ̂+iJ)g0,0 =
g0,0 leading to Zg0,0(ϕ) = g0,0(ϕ) (see (5.1)). Hence using (2.8) and the first equation of (2.12)

we find that up to normalization constant g0,0(ϕ) = e−
1
2ϕ

2
. The tails of the Gaussian g0,0(ϕ)

outside the range [−π, π) can be wrapped around the circle according to

f0,0(ϕ) =
∞∑

j=−∞
g0,0(ϕ+ 2 jπ). (5.6)

On using the Poisson summation formula

∞∑
j=−∞

f (x + 2 jπ) =
1√
2π

∞∑
j=−∞

f̃ ( j)ei jx, (5.7)

where f̃ (p) = 1√
2π

∫∞
−∞ f (x)e−ipx dx is the Fourier transform of f (x), and normalizing the

obtained function f0,0(ϕ), we get

f0,0(ϕ) =
θ3( ϕ

2π |
i

2π )√
θ3

(
0| i

π

) . (5.8)

Now applying the Perelomov approach [15] we define the coherent states f m,α(ϕ), where m is
integer as

fm,α(ϕ) = eimϕ̂−iαJ f0,0(ϕ) (5.9)

11
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Utilizing the Baker–Hausdorff identity we obtain

eimϕ̂−iαJ = e−
i
2 mαUm e−iαJ (5.10)

Equations (2.12), (5.8), (5.9) and (5.10) taken together yield

fm,α(ϕ) = e−
i
2 mα eimϕ θ3

(
1

2π (ϕ− α)| i
2π

)√
θ3

(
0| i

π

) , m ∈ Z. (5.11)

Up to irrelevant phase factor e
i
2 mα the coherent states (5.11) coincide with the coherent states

(5.5). We point out that the states defined by (5.1) are the concrete realization of the very
general abstract mathematical scheme of construction of Bargmann spaces introduced in
[16, 17]. It should also be noted that the method for construction of the coherent states based
on the eigenvalue equation (5.1) was generalized to the case of the n-dimensional sphere Sn

by Hall [18]. The alternative constructions of coherent states for the sphere Sn based on the
generalized Perelomov-type approach for the group E(n + 1) were introduced by De Bièvre
[19] and Isham and Klauder [20].

We now collect some basic properties of the Gaussian circular coherent states. The Fourier
coefficients of expansion of the normalized coherent state in the basis of eigenvectors of the
angular momentum operator are given by

〈 j|m,α〉 = e−
1
2 j2 em j−i jα√

θ3
(

im
π
| i
π

) . (5.12)

Taking into account (2.10), (2.13) and (5.5) we find that for integer m the formula (5.12)
reduces to

〈 j|m,α〉 = e−
1
2 ( j−m)2

e−i jα√
θ3

(
0| i

π

) , m ∈ Z. (5.13)

Therefore, the probability distribution |〈 j|m,α〉|2 such that

|〈 j|m,α〉|2 =
e−( j−m)2

θ3

(
0| i

π

) , m ∈ Z (5.14)

is a discrete Gaussian one. We point out that θ3(0| i
π

) ≈
√
π, where the relative error of approx-

imation is of order 0.1 per mille. Furthermore, making use of (2.5b), (5.3) and (5.12) we get
the overlap of the Gaussian coherent states (5.2). Namely, we have

〈m,α|m′,α′〉 = θ3(α−α′
2π − i m+m′

2π | i
π

)√
θ3

(
im
π
| i
π

)
θ3

(
im′
π
| i
π

) . (5.15)

In the case with discrete m and m′ the scalar product (5.15) can be written as

〈m,α|m′,α′〉 = e−
1
4 (m−m′)2

e
i
2 (m+m′)(α−α′) θ3(α−α′

2π | i
π

)

θ3
(
0| i

π

) , m, m′ ∈ Z. (5.16)

12
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The completeness relation satisfied by the coherent states (5.2) obtained with the help of (2.5a)
and (5.12) is of the form

1
2π

∫ π

−π

dα
∫ ∞

−∞
dμ(m)|m,α〉〈m,α| = I, (5.17)

where dμ(m) = 1√
π
θ3( im

π
| i
π

)e−m2
dm. In the case with the discrete parameter m labeling the

Gaussian circular coherent states the resolution of the identity is given by

∞∑
m=−∞

1
2π

∫ π

−π

dα|m,α〉〈m,α| = I (5.18)

following directly from (2.5a) and (5.13).
We now discuss the parametrization of the Gaussian circular coherent states in a more detail.

Using (2.5b) and (5.12) we find that the expectation value of the angular momentum J in the
normalized coherent state is [4]

〈m,α|Ĵ|m,α〉 = m + 2π sin(2mπ)

×
∞∑

n=1

e−π2(2n−1)

(1 + e−π2(2n−1) e2imπ)(1 + e−π2(2n−1) e−2imπ)
. (5.19)

From (5.19) it follows that for integer m we have

〈m,α|Ĵ|m,α〉 = m. (5.20)

Otherwise

〈m,α|Ĵ|m,α〉 ≈ m. (5.21)

where the approximation is very good—the maximal relative error is of order 0.1 per cent.
Thus, it turns out that m can be really regarded as a classical orbital momentum. Proceeding
analogously as with (5.21) and making use of (2.5b), (2.6) and (5.12) we get [4]

〈m,α|U|m,α〉 = e−
1
4 eiα θ2

(
im
π
| i
π

)
θ3

(
im
π |

i
π

)
= e−

1
4 eiα 1 + 2

∑∞
n=1e−π2n2

cos(2m + 1)nπ

1 + 2
∑∞

n=1e−π2n2 cos 2mnπ
, (5.22)

where

θ2(v|τ ) =
∞∑

j=−∞
q

(
j− 1

2

)2

(eiπv)(2 j−1) (5.23)

is the Jacobi theta function. An immediate consequence of (5.22) is

〈m,α|U|m,α〉 ≈ e−1/4 eiα (5.24)

where the approximation is as good as in (5.21). Proceeding as with (4.12) and introducing the
relative expectation value

〈〈m,α|U|m,α〉〉 = 〈m,α|U|m,α〉
〈0, 0|U|0, 0〉 (5.25)

13
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we obtain

〈〈m,α|U|m,α〉〉 = eiα. (5.26)

Therefore the parameter α can be regarded as a classical angle. We remark that the factors
e−1/4 in (5.24) and I1(2s)

I0(2s) in (4.12), respectively, are related to the fact that U is not diagonal in
the coherent state basis—it is diagonal in the position representation spanned by the vectors
|ϕ〉 (see (2.7)).

We finally mention that the Gaussian circular coherent states minimize the uncertainty
relations of the form [21]

Δ2(J) +Δ2(ϕ̂) � 1, (5.27)

where the measure of the uncertainty of the angular momentum is defined by

Δ2(J) =
1
4

ln
(
〈e−2J〉〈e2J〉

)
(5.28)

and the measure of the uncertainty of the angle is given by

Δ2(ϕ̂) =
1
4

ln
1

|〈U2〉|2 , (5.29)

where 〈A〉 designates the average value of the observable A. In opposition to the standard
coherent states for a particle on a line, the saturation of the uncertainty relations (5.27) does
not uniquely determine up to a unitary transformation the Gaussian circular coherent states.

5.2. Wigner function for the Gaussian circular coherent states

We now investigate the Wigner function of the Gaussian coherent states for the quantum
mechanics on a circle. Taking into account (3.1) and (5.2) we find that this function is
given by

Wm,α(l,ϕ) =
1

2πθ3
(

im
π
| i
π

) π∫
−π

θ3

(
1

2π

(
ϕ− α− θ

2
+ im

) ∣∣∣∣ i
2π

)

× θ3

(
1

2π

(
ϕ− α+

θ

2
− im

) ∣∣∣∣ i
2π

)
e−iθl dθ (5.30)

Using (3.6), (5.3) and (5.30) or (3.13) and (5.12) we get

Wm,α(l,ϕ) =
1

θ3
(

im
π
| i
π

)
(
θ3(

ϕ− α

π
| i
π

)
∞∑

j=−∞
e− j2 e2mjsinc π( j − l)

+ θ2

(
ϕ− α

π

∣∣∣∣ i
π

) ∞∑
j=−∞

e−
1
4 (2 j+1)2

em(2 j+1) sincπ

(
j − l +

1
2

))
. (5.31)

We have thus expressed the Wigner function for the Gaussian circular coherent states given
by the integral (5.30) in terms of the Jacobi theta functions and quickly convergent series.
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Integrating both sides of equations (5.30) and (5.31) over l and making use of (3.8), (5.3) and
(5.23) we obtain the following relation for the Jacobi theta function

∣∣∣∣θ3

(
1

2π
(ϕ− α− im)

∣∣∣∣ i
2π

) ∣∣∣∣
2

= θ3

(
ϕ− α

π

∣∣∣∣ i
π

)
θ3

(
im
π

∣∣∣∣ i
π

)
+ θ2

(
ϕ− α

π

∣∣∣∣ i
π

)
θ2

(
im
π

∣∣∣∣ i
π

)
.

(5.32)

The formula (5.32) is a direct consequence of the Watson identity [13]

θ3

(
z

∣∣∣∣τ2
)
θ3

(
w

∣∣∣∣τ2
)

= θ3(z + w|τ )θ3(z − w|τ ) + θ2
(
z + w|τ

)
θ2(z − w|τ ). (5.33)

We have thus verified the correctness of (5.31). The validity of (3.2) can be easily checked with
the use of (5.2) and (5.30). The property (3.7) is a straightforward consequence of (5.31) and
the relations (5.2), (5.3), (5.12) and (5.23).

Now, utilizing (5.4) we can write (5.31) for integer m as

Wm,α(l,ϕ) =
1

θ3
(
0| i

π

)
(
θ3

(
ϕ− α

π

∣∣∣∣ i
π

) ∞∑
j=−∞

e− j2 sincπ( j + m − l)

+ θ2

(
ϕ− α

π

∣∣∣∣ i
π

) ∞∑
j=−∞

e−
1
4 (2 j+1)2

× sincπ

(
j + m − l +

1
2

))
, m ∈ Z (5.34)

Finally, for integer l the formula (5.34) reduces to

Wm,α(l,ϕ) =
1

θ3
(
0| i

π

)
(
θ3

(
ϕ− α

π

∣∣∣∣ i
π

)
e−(l−m)2

+ θ2

(
ϕ− α

π

∣∣∣∣ i
π

) ∞∑
j=−∞

e−
1
4 (2 j+1)2 (−1) j+m−l

j + m − l + 1
2

)
, m, l ∈ Z. (5.35)

The expression for the Wigner function in the particular case of the integer m and l equivalent to
(5.35) was originally obtained by Rigas et al [6]. More precisely, the formula obtained therein
is an immediate consequence of (5.35) and the identity [22]

θ2(v|τ ) = eiπ( τ
4 +v)θ3

(
v +

τ

2

∣∣∣∣τ
)
. (5.36)

The Wigner function (5.30) is illustrated in figure 2 (top left). As with the Wigner function for
the circular coherent states (4.15) the Wigner function in the Gaussian coherent states can be
negative (see figure 2 top right and bottom left) and is peaked at l = m and ϕ = α as shown in
figure 2 (bottom right).

15



J. Phys. A: Math. Theor. 54 (2021) 275302 K Kowalski and K Ławniczak

Figure 2. Top left: the plot of the surface given by the Wigner function for the Gaussian
coherent states (5.30) where the parameters m and α are the same as in figure 1 for
the all panels. Top right: the negative part of the Wigner function from the panel on
the left. Bottom left: the contour plot of the Wigner function (5.30). The regions of the
negative values of the Wigner function are easily seen. Bottom right: the contour plot
of the Wigner function (5.30) illustrating the maximum of this function at l = m and
ϕ = α.

6. Wigner function for the Gaussian–Fourier coherent states

6.1. Gaussian–Fourier coherent states

The third approach known from the literature on coherent states was introduced by Chadzi-
taskos, Luft and Tolar [3]. Roughly speaking it relies on restriction of the normalized Gaussian
representing the vacuum state such that

f T
0,0(ϕ) = A e−

1
2ϕ

2
(6.1)

where A =
√

2
√
π

erf(π) and erf(x) is the error function, to the interval ϕ ∈ [−π, π), and generating
the family of coherent states by means of the action of the Weil operators on the vacuum state:

f T
m,α(ϕ) = eimϕ̂ e−iαJ f T

0,0(ϕ) = Um e−iαJ f T
0,0(ϕ), (6.2)
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where m ∈ Z and α ∈ [−π, π). In order to clip the defined coherent states to the range [−π, π)
they are defined in different regions as [3]

f T
m,α(ϕ) =

⎧⎨
⎩

A eimϕ e−
1
2 (ϕ−α)2

for ϕ ∈ [−π, π + α)

A eimϕ e−
1
2 (ϕ−α−2π)2

for ϕ ∈ [π + α, π)
(6.3a)

where α ∈ [−π, 0), and

f T
m,α(ϕ) =

⎧⎨
⎩

A eimϕ e−
1
2 (ϕ−α)2

for ϕ ∈ [−π + α, π)

A eimϕ e−
1
2 (ϕ−α+2π)2

for ϕ ∈ [−π,−π + α)
(6.3b)

whereα ∈ [0, π). A in (6.3) is the same normalization constant as in (6.1). In view of the method
for construction of these states they would be called the clipped Gaussian coherent states. Of
course, the functions (6.3) can be taken modulo 2π, nevertheless they are not explicitly periodic
and it is not clear how to define the Wigner function for them. Therefore we introduce the proper
coherent states based on the Fourier transform of the Gaussian e−

1
2ϕ

2
, hence the normalized

vacuum state is

f F
0,0(ϕ) = C

∞∑
j=−∞

e−
1
2 j2 ei jϕ[erf

(
π + i j√

2

)
+ erf

(
π − i j√

2

)
], (6.4)

where C is the normalization constant given by

C =
1√∑∞

j=−∞e− j2
[
erf

(
π+i j√

2

)
+ erf

(
π−i j√

2

)]2
(6.5)

and the use was made of the identity∫ π

−π

eikx e−
1
2 x2

dx = e−
1
2 k2

√
π

2

[
erf

(
π + ik√

2

)
+ erf

(
π − ik√

2

)]
. (6.6)

We point out that by virtue of the Parseval theorem we have the relation

1
2π

∫ π

−π

e−ϕ2
dϕ =

1
8π

∞∑
j=−∞

e− j2
[

erf

(
π + i j√

2

)
+ erf

(
π − i j√

2

)]2

(6.7)

implying the nontrivial identity

∞∑
j=−∞

e− j2
[

erf

(
π + i j√

2

)
+ erf

(
π − i j√

2

)]2

= 4
√
πerf(π). (6.8)

The constant C calculated from (6.5) and (6.8) is C = 1

2
√√

πerf(π)
= 0.375 564 439.

Proceeding as with (6.1) we define the coherent states for arbitrary α and integer m as

f F
m,α(ϕ) = eimϕ̂ e−iαJ f F

0,0(ϕ) = Um e−iαJ f F
0,0(ϕ)

= C eimϕ
∞∑

j=−∞
e−

1
2 j2 ei j(ϕ−α)

[
erf

(
π + i j√

2

)
+ erf

(
π − i j√

2

)]
. (6.9)
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Figure 3. A comparison of the classicality of the investigated coherent states for the
quantum mechanics on a circle, where the indicator of non-classicality is the quantity
Δ( f ) given by (7.9) and we set α = 0 in the corresponding Wigner functions (4.15),
(5.30) and (6.19) and s = 1.26 in (4.15). Because of the very small differences that can-
not be seen in the top panel the non-classicality is compared separately in the bottom
panel of the Wigner function (5.30) for the Gaussian coherent states (black disks) and
the Wigner function (6.19) in the Gaussian–Fourier ones (gray disks). A look at both
panels is enough to conclude that the most classical coherent states are the Gaussian
ones.

Bearing in mind the procedure of construction of these states we have decided to call them
the Gaussian–Fourier coherent states. We remark that the method of periodization of func-
tions based on the utilization of the Fourier transform is an alternative of wrapping functions
around the circle such as that applied in the case of the Gaussian coherent states (see (5.6)).
As indicated by a referee such method is restricted to the case of a manifold with a non-
trivial topology such as a circle. Indeed, for the quantum mechanics on a line the Fourier
transform of a Gaussian is also a Gaussian so the discussed method cannot be applied for
generation of coherent states. It should also be noted that the relations (5.9), (6.2) and (6.9)
can be regarded as counterparts of the formula for generation of the standard coherent states
by means of the unitary displacement operator applied to the ground state of the harmonic
oscillator.

We now present some most important properties of the Gaussian–Fourier coherent
states. Using (2.10) we find that the projection of the normalized coherent states |m,α〉F,
where f F

m,α(ϕ) = 〈ϕ|m,α〉F , onto the eigenvectors | j〉 of the angular momentum is of the
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form

〈 j|m,α〉F = C e−
1
2 ( j−m)2

e−i( j−m)α

[
erf

(
π + i( j − m)√

2

)
+ erf

(
π − i( j − m)√

2

)]
. (6.10)

The coherent states (6.9) are not orthogonal. Using (2.5b) and (6.10) we obtain the following
formula for the overlap of these states

F〈m,α|m′,α′〉F = C2e−imα eim′α′
∞∑

j=−∞
e−

1
2 ( j−m)2

e−
1
2 ( j−m′)2

×
[

erf

(
π + i( j − m)√

2

)
+ erf

(
π − i( j − m)√

2

)]

×
[

erf

(
π + i( j − m′)√

2

)
+ erf

(
π − i( j − m′)√

2

)]
(6.11)

The Gaussian–Fourier coherent states form a complete (over complete) set. On making use of
(2.5a) and (6.10) we arrive at the following resolution of the identity

∞∑
m=−∞

1
2π

∫ π

−π

dα|m,α〉FF〈m,α| = I. (6.12)

We now discuss the reproduction of classical values by the Gaussian–Fourier coherent states.
Utilizing (2.5b) and (6.10) we find

F〈m,α| J |m,α〉F = m. (6.13)

Therefore the parameter m corresponds to the classical angular momentum. Nevertheless, it
must be borne in mind that in opposition to the classical case m is discrete. Furthermore, taking
into account (2.3) and the second equation of (6.9) we get

F〈m,α|U |m,α〉F = F〈0, 0| eiαJUe−iαJ |0, 0〉F = eiα
F〈0, 0|U|0, 0〉F, (6.14)

where |0, 0〉F is the abstract normalized vacuum vector such that f F
0,0(ϕ) = 〈ϕ|0, 0〉F.

Using(2.7), (2.10) and (6.4) we find

F〈0, 0|U |0, 0〉F = e−
1
4 C2

∞∑
j=−∞

e
−

(
j+ 1

2

)2 [
erf

(
π + i j√

2

)
+ erf

(
π − i j√

2

)]

×
[

erf

(
π + i( j + 1)√

2

)
+ erf

(
π − i( j + 1)√

2

)]
. (6.15)

It follows that

F〈0, 0|U |0, 0〉F ≈ e−
1
4 , (6.16)

where the relative error is 2 per mil, so the expression (6.14) for the expectation value of U has
the same form as (5.24) in the case of the Gaussian coherent states. On introducing the relative
average (see (5.25))

F〈〈m,α|U |m,α〉〉F = F〈m,α|U |m,α〉F

F〈0, 0|U |0, 0〉F

(6.17)
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we get

F〈〈m,α|U |m,α〉〉F = eiα, (6.18)

so α can be identified with the classical angle. We finally point out that in opposition to the
Gaussian circular coherent states satisfying (5.1) we do not know the eigenvalue equation
defining the Gaussian–Fourier coherent states.

6.2. Wigner function for the Gaussian–Fourier coherent states

Our purpose now is to examine the Wigner function of the Gaussian–Fourier coherent states.
From (3.1) and (6.9) it follows that this function is given by

WF
m,α(l,ϕ) = C2

∞∑
j=−∞

∞∑
k=−∞

e−
1
2 j2 e−

1
2 k2

ei(k− j)(ϕ−α) ×
[

erf

(
π + i j√

2

)
+ erf

(
π − i j√

2

)]

×
[

erf

(
π + ik√

2

)
+ erf

(
π − ik√

2

)]

× sincπ

[
1
2

(k + j) + m − l

]
, m ∈ Z (6.19)

One can check that all the properties of the Wigner function presented in section 3 hold true in
the case of the function (6.19). Unfortunately, we do not know any way to simplify the double
sum in (6.19).

It follows from the numerical calculations that the behavior of the Wigner function (6.19) for
the Gaussian–Fourier coherent states is very similar to that of the Wigner function (5.30) in the
Gaussian coherent states presented in figure 2 and we have decided not to depict it herein. The
difference of the two Wigner functions related to the degree of their negativity is demonstrated
in the next section (see figure 3, right).

7. Comparison of classicality of the coherent states based on the Wigner
function

Coherent states can be regarded as the states closest to the classical ones. In particular, they
were introduced by Schrödinger in 1926 [23] as the states minimizing the Heisenberg uncer-
tainty relations. In the discussed case of the quantum mechanics on a circle there are no
generally accepted uncertainty relations. Instead, we have decided to use as an indicator of
classicality of the investigated coherent states the negativity of the Wigner function [24]. In
order to enable the comparison we should first fix the squeezing parameter s given by (4.4)
parametrizing the circular coherent states. We assume for simplicity that the classical angle
α labeling the coherent states is equal to zero. We also restrict to the case of integer classical
momentum m marking the coherent states. Using (5.22) and the following identities for the
Gaussian coherent states |m,α〉

(ΔJ)2 =
1
2
− π2 cos 2πm

∞∑
n=1

1
cosh π2(2n − 1) + cos 2πm

− π2 sin2 2πm
∞∑

n=1

1
(cosh π2(2n − 1) + cos 2πm)2

, (7.1)
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where m is real, and

〈m,α|U2|m,α〉 = e−1 e2iα (7.2)

we find that the counterpart of the squeezing parameter s for the Gaussian coherent states |m,α〉
in the case of α = 0 and integer m is

sG =
ΔJ

Δ sin ϕ̂
= 1.256 48 (7.3)

Furthermore, utilizing (6.14) and the following relations that hold true for the Gaus-
sian–Fourier coherent states

(ΔJ)2 =
1

2
√
πerf(π)

∞∑
n=1

n2 e−n2
[

erf

(
π + in√

2

)
+ erf

(
π − in√

2

)]2

(7.4)

and

F〈m,α|U2 |m,α〉F = e2iα
F〈0, 0|U2|0, 0〉F, (7.5)

where

F〈0, 0|U2 |0, 0〉F = e−1 1
4
√
π erf(π)

{[
erf

(
π + i√

2

)
+ erf

(
π − i√

2

)]2

+ 2
∞∑

n=1

e−n2
[

erf

(
π + i(n + 1)√

2

)
+ erf

(
π − i(n + 1)√

2

)]

×
[

erf

(
π + i(n − 1)√

2

)
+ erf

(
π − i(n − 1)√

2

)]}
, (7.6)

we arrive at the following counterpart of the squeezing parameter in the case of the Gaus-
sian–Fourier coherent states with α = 0

sF = 1.257 89 (7.7)

We remark that (7.5) is a very good approximation of (7.2). Namely, we have
F〈m,α|U2|m,α〉F = 0.999 985 · e−1 e2iα. In view of (7.3) and (7.7) we can set s = 1.26 for
the circular coherent states to enable their comparison with the remaining coherent states.

Now let W f(l,ϕ) be the Wigner function of the state f (ϕ) of a particle on a circle. Following
[24] we can consider the double volume δ( f ) of the integrated negative part of the Wigner
function W f(l,ϕ) as an indicator of non-classicality of f (ϕ), so

δ( f ) =
∫ ∞

−∞
dl

1
2π

∫ π

−π

dϕ(|Wf(l,ϕ)| − Wf(l,ϕ)) (7.8a)

=

∫ ∞

−∞
dl

1
2π

∫ π

−π

dϕ|Wf(l,ϕ)| − 1, (7.8b)

where (7.8b) is an immediate consequence of (7.8a) and (3.10). Bearing in mind the discrete-
ness of the orbital momentum variable in the Wigner function preferred by some authors and
simplicity of numerical calculations we use instead of δ( f ) the following quantity

Δ( f ) =
∞∑

l=−∞

1
2π

∫ π

−π

dϕ|Wf(l,ϕ)| − 1, (7.9)
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Clearly, Δ( f ) is the total double area bounded by negative part of the Wigner function W f(l,ϕ)
of the one variable ϕ with fixed l and the axis ϕ = 0, summed over all integer l.

A comparison of classicality of the discussed coherent states for a particle on a circle based
on the application of Δ( f ) defined by (7.9) as an indicator of negativity of the Wigner func-
tion is shown in figure 3. As easily seen the most classical and thus the best are the Gaussian
coherent states.

8. Conclusion

In this work the Wigner functions are studied in the coherent states for the quantum mechanics
on a circle. It seems that the introduced nontrivial analytic expressions of the Wigner func-
tions (4.19), (4.22) and (5.31) would be of importance in practical applications. We only recall
the utilization of the circular squeezed states in the investigation of the Rydberg wave pack-
ets. It should also be noted that the method for construction of the Gaussian–Fourier coherent
states described herein relying on application of the Fourier transform would be a new effective
tool in the theory of coherent states. We point out the very small differences between the Gaus-
sian–Fourier states and the best as shown in this paper, Gaussian coherent states. An interesting
property of the all discussed Wigner functions is the maximum at points of the classical phase
space labeling the coherent states. As a matter of fact such behavior at particular point of the
Wigner function for the Gaussian coherent states was reported for example in reference [6],
nevertheless it seems that the peak of the Wigner functions is their general attribute regardless
of the type of coherent states marked with point of a phase space. Moreover, it seems that the
presence of such peak would be regarded as a correctness criterion for both Wigner functions
and coherent states. We remark that the probability density for the coordinates and momenta
in the standard coherent states and coherent states for a particle on a circle (see (4.3) and (5.2))
and sphere [25] are peaked at the position and momentum orangular momentum, respectively
referring to the classical one parametrizing the coherent state. The maximum of the Wigner
function at points labeling the coherent states can be viewed as a generalization of the behav-
ior of the probability densities to the case of the phase space. We finally point out that the
comparison of classicality of coherent states based on negativity of the corresponding Wigner
function would be a useful tool for selecting the best coherent states. For instance it would be
interesting to compare the classicality of the coherent states for a quantum particle on a sphere
introduced in reference [26] with that discussed in reference [27].
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[21] Kowalski K and Rembieliński J 2002 On the uncertainty relations and squeezed states for the

quantum mechanics on a circle J. Phys. A: Math. Gen. 35 1405–14
[22] Korn G A and Korn T M 2000 Mathematical Handbook for Scientist and Engineers (New York:

Dover)
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