Analytic and Algebraic Geometry 3

Łódź University Press 2019, 79-92
DOI: http://dx.doi.org/10.18778/8142-814-9.07

GELFOND-MAHLER INEQUALITY FOR MULTIPOLYNOMIAL RESULTANTS

ALEKSANDRA GALA-JASKÓRZYŃSKA, KRZYSZTOF KURDYKA, KATARZYNA RUDNICKA, AND STANIS£AW SPODZIEJA

Abstract

We give a bound of the height of a multipolynomial resultant in terms of polynomial degrees, the resultant of which applies. Additionally we give a Gelfond-Mahler type bound of the height of homogeneous divisors of a homogeneous polynomial.

1. Introduction

Let $f \in \mathbb{Z}[u]$, where $u=\left(u_{1}, \ldots, u_{N}\right)$ is a system of variables and \mathbb{Z} is the ring of integers, be a nonzero polynomial of the form

$$
\begin{equation*}
f(u)=\sum_{|\nu| \leqslant d_{f}} a_{\nu} u^{\nu} \tag{1}
\end{equation*}
$$

where $a_{\nu} \in \mathbb{Z}, u^{\nu}=u_{1}^{\nu_{1}} \cdots u_{N}^{\nu_{N}}$ and $|\nu|=\nu_{1}+\cdots+\nu_{N}$ for $\nu=\left(\nu_{1}, \ldots, \nu_{N}\right) \in \mathbb{N}^{N}$ and \mathbb{N} denotes the set of nonnegative integers. By the height of the polynomial f we mean

$$
H(f):=\max \left\{\left|a_{\nu}\right|: \nu \in \mathbb{N}^{N},|\nu| \leq d_{f}\right\} .
$$

Let $f_{1}, \ldots, f_{r} \in \mathbb{Z}[u]$ be nonzero polynomials, and let d_{j} be the degree of $f=$ $f_{1} \cdots f_{r}$ with respect to u_{j} for $j=1, \ldots, N$.
A.P. Gelfond [3] obtained the following bound.

Theorem 1.1 (Gelfond).

$$
\begin{equation*}
H\left(f_{1}\right) \cdots H\left(f_{r}\right) \leqslant 2^{d_{1}+\cdots+d_{N}-k} \sqrt{\left(d_{1}+1\right) \cdots\left(d_{N}+1\right)} H(f) \tag{2}
\end{equation*}
$$

where k is the number of variables u_{j} that genuinely appear in f.

[^0]K. Mahler [6] introduced a measure $M(f)$ of a polynomial $f \in \mathbb{C}[u]$ (currently called Mahler measure, see Section 2.1) and in [7] reproved (2) and proved the following

Theorem 1.2 (Mahler). Under notations of Theorem 1.1,

$$
\begin{equation*}
H(f) \leqslant 2^{d_{1}+\cdots+d_{N}-k} M(f) \tag{3}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
L_{1}\left(f_{1}\right) \cdots L_{1}\left(f_{r}\right) \leqslant 2^{d_{1}+\cdots+d_{N}} M(f) \leqslant 2^{d_{1}+\cdots+d_{N}} L_{1}(f) \tag{4}
\end{equation*}
$$

where $L_{1}(f):=\sum_{|\nu| \leqslant d_{f}}\left|a_{\nu}\right|$ is the L_{1}-norm of a polynomial f of the form (1).
The aim of the article is to obtain a similar to the above-described estimates for the height, L_{1}-norms and Mahler's measures of a resultant for systems of homogeneous forms. More precisely let d_{0}, \ldots, d_{n} be fixed positive integers and let f_{0}, \ldots, f_{n} be a system of homogeneous polynomials in $x=\left(x_{0}, \ldots, x_{n}\right)$ with indeterminate coefficients of degrees d_{0}, \ldots, d_{n} in x, respectively. By a resultant $\operatorname{Res}_{d_{0}, \ldots, d_{n}}$ we mean the unique irreducible polynomial in the coefficients of f_{0}, \ldots, f_{n} with integral coefficients such that for any specializations $f_{0, a_{0}}, \ldots, f_{n, a_{n}}$ of f_{0}, \ldots, f_{n}, the value $\operatorname{Res}_{d_{0}, \ldots, d_{n}}\left(f_{0, a_{0}}, \ldots, f_{n, a_{n}}\right)$ is equal to zero if and only if the polynomials $f_{0, a_{0}}, \ldots, f_{n, a_{n}}$ have a common nontrivial zero. For basic notations and properties of the resultants, see Section 3.1 and for more detailed description on the resultant see for instance [2]. The main result of this paper is Theorem 3.12 which says that:

$$
\begin{aligned}
M\left(\operatorname{Res}_{d_{0}, \ldots, d_{n}}\right) & \leqslant\left(d_{*}+1\right)^{n K_{n} d_{*}^{n}}, \\
H\left(\operatorname{Res}_{d_{0}, \ldots, d_{n}}\right) & \leqslant\left(d_{*}+1\right)^{n\left(K_{n}+n+1\right) d_{*}^{n}-n(n+1)}, \\
L_{1}\left(\operatorname{Res}_{d_{0}, \ldots, d_{n}}\right) & \leqslant\left(d_{*}+1\right)^{n\left(K_{n}+n+1\right) d_{*}^{n}},
\end{aligned}
$$

where $K_{n}=e^{n+1} / \sqrt{2 \pi n}$ and $d_{*}=\max \left\{d_{0}, \ldots, d_{n}\right\}$. Moreover if $n \geqslant 2$ and $d_{*} \geqslant 4$ then we have the following estimates:

$$
\begin{aligned}
& M\left(\operatorname{Res}_{d_{0}, \ldots, d_{n}}\right) \leqslant\left(d_{*}\right)^{n K_{n} d_{*}^{n}}, \\
& H\left(\operatorname{Res}_{d_{0}, \ldots, d_{n}}\right) \leqslant\left(d_{*}\right)^{n\left(K_{n}+n+1\right) d_{*}^{n}-n(n+1)} \text {, } \\
& L_{1}\left(\operatorname{Res}_{d_{0}, \ldots, d_{n}}\right) \leqslant\left(d_{*}\right)^{n\left(K_{n}+n+1\right) d_{*}^{n}} .
\end{aligned}
$$

Note that the above estimates of $L_{1}\left(\operatorname{Res}_{d_{0}, \ldots, d_{n}}\right)$ are not a direct consequences of the estimates of $H\left(\operatorname{Res}_{d_{0}, \ldots, d_{n}}\right)$ (see Remark 3.13).
M. Sombra in [9], as a corollary from a study of the height of the mixed sparse resultant, gave an estimation of $H\left(\operatorname{Res}_{d, \ldots, d}\right)$:

$$
H\left(\operatorname{Res}_{d \ldots, d}\right) \leqslant(d+1)^{n(n+1)!d^{n}}
$$

Since $K_{n}+n+1=n+1+e^{n+1} / \sqrt{2 \pi n}<(n+1)$! for $n \geqslant 3$, so the estimation (26) is more explicit than the above for $n \geqslant 3$.

The paper is organized as follows. In Section 2 we collect basic notations concering the Mahler measure of a polynomial and we prove a Mahler type bounds for
the height and the L_{1}-norm of multihomogeneous polynomials (see Lemma 2.2). The proof of Theorem 3.12 we give in Section 3. The crucial role in the proof plays an estimation of the L_{1} norm of the Macaulay discriminant of a coefficients matrix for a powers of polynomials f_{0}, \ldots, f_{n} (see Lemma 3.9).

Additionally, in Section 4 we give Corollaries 4.1 and 4.2 which are versions of Theorems 1.1 and 1.2 for the multihomogeneous and homogeneous polynomials cases.

2. Auxiliary results

2.1. Notations. Let $f \in \mathbb{C}[u]$, where $u=\left(u_{1}, \ldots, u_{N}\right)$ is a system of variables, be a nonzero polynomial of the form

$$
\begin{equation*}
f(u)=\sum_{|\nu| \leqslant d_{f}} a_{\nu} u^{\nu}, \tag{5}
\end{equation*}
$$

where for $\nu=\left(\nu_{1}, \ldots, \nu_{N}\right) \in \mathbb{N}^{N}$ the coefficient a_{ν} is a complex number and we put $|\nu|=\nu_{1}+\cdots+\nu_{N}$ and $u^{\nu}=u_{1}^{\nu_{1}} \cdots u_{N}^{\nu_{N}}$.

In this section I denotes the interval $[0,1]$ and i the imaginary unit (i.e., $i^{2}=-1$). Let $\mathbf{e}: I^{N} \rightarrow \mathbb{C}^{N}$ be a mapping defined by

$$
\mathbf{e}(\mathbf{t})=\left(\exp \left(2 \pi t_{1} i\right), \ldots, \exp \left(2 \pi t_{N} i\right)\right) \quad \text { for } \mathbf{t}=\left(t_{1}, \ldots, t_{N}\right) \in I^{N}
$$

For a complex polynomial $f \in \mathbb{C}[u]$, the number

$$
M(f)=\exp \left(\int_{I^{N}} \log |f(\mathbf{e}(\mathbf{t}))| d \mathbf{t}\right)
$$

is called the Mahler measure of f (see [7]). A significient property of the Mahler measure is the following (see [7]): for $f, g \in \mathbb{C}[u]$,

$$
\begin{equation*}
M(f g)=M(f) M(g) \tag{6}
\end{equation*}
$$

Moreover, if $f \in \mathbb{Z}[u], f \neq 0$, then (see for instance [8, Corollary 2]),

$$
\begin{equation*}
M(f) \geqslant 1 \tag{7}
\end{equation*}
$$

By L_{2}-norm of a polynomial $f \in \mathbb{C}[u]$ we mean

$$
L_{2}(f)=\left(\int_{I^{N}}|f(\mathbf{e}(\mathbf{t}))|^{2} d \mathbf{t}\right)^{1 / 2}
$$

For a polynomial $f \in \mathbb{C}[u]$ of the form (5) we have

$$
\begin{equation*}
L_{2}(f)=\left(\sum_{|\nu| \leqslant d_{f}}\left|a_{\nu}\right|^{2}\right)^{1 / 2} \tag{8}
\end{equation*}
$$

By Jensen's inequality we obtain

$$
\begin{equation*}
M(f) \leqslant L_{2}(f) \tag{9}
\end{equation*}
$$

2.2. Mahler type inequalities for multihomogeneous polynomials. By analogous argument as in [7] we obtain the following lemma.

Lemma 2.1. Let $f \in \mathbb{C}[u]$, where $u=\left(u_{1}, \ldots, u_{N}\right)$, be a homogeneous polynomial of degree $d_{f}>0$ of the form

$$
f(u)=\sum_{|\nu|=d_{f}} a_{\nu} u^{\nu}
$$

Then there are homogeneous polynomials $f_{k_{1}, \ldots, k_{\ell}} \in \mathbb{C}\left[u_{\ell+1}, \ldots, u_{N}\right]$, with $\operatorname{deg} f_{k_{1}, \ldots, k_{\ell}}=d_{f}-k_{1}-\cdots-k_{\ell}$ for $k_{1}+\cdots+k_{\ell} \leqslant d_{f}, \ell=1, \ldots, N$, such that

$$
\begin{aligned}
f\left(u_{1}, \ldots, u_{N}\right) & =\sum_{k_{1}=0}^{d_{f}} f_{k_{1}}\left(u_{2}, \ldots, u_{N}\right) u_{1}^{k_{1}} \\
f_{k_{1}, \ldots, k_{\ell-1}}\left(u_{\ell}, \ldots, u_{N}\right) & =\sum_{k_{\ell}=0}^{d_{f}-k_{1}-\cdots-k_{\ell-1}} f_{k_{1}, \ldots, k_{\ell}}\left(u_{\ell+1}, \ldots, u_{N}\right) u_{\ell}^{k_{\ell}} .
\end{aligned}
$$

Moreover, for any $\nu=\left(\nu_{1}, \ldots, \nu_{N}\right) \in \mathbb{N}^{N},|\nu|=d_{f}$, we have

$$
\begin{aligned}
\left|a_{\nu}\right|=\left|f_{\nu}\right| & \leqslant\binom{ d_{f}-\nu_{1}-\ldots-\nu_{N-1}}{\nu_{N}} M\left(f_{\nu_{1}, \ldots, \nu_{N-1}}\right), \\
M\left(f_{\nu_{1}}\right) & \leqslant\binom{ d_{f}}{\nu_{1}} M(f), \\
M\left(f_{\nu_{1}, \ldots, \nu_{\ell}}\right) & \leqslant\binom{ d_{f}-\nu_{1}-\cdots-\nu_{\ell-1}}{\nu_{\ell}} M\left(f_{\nu_{1}, \ldots, \nu_{\ell-1}}\right), 2 \leqslant \ell \leqslant N
\end{aligned}
$$

In particular,

$$
\left.\left.\left.\begin{array}{rl}
\left|a_{\nu}\right| \leqslant\binom{ d_{f}}{\nu_{1}}\binom{d_{f}-\nu_{1}}{\nu_{2}} \cdots\left(\begin{array}{c}
d_{f}-\nu_{1}-\cdots \\
\nu_{N}
\end{array}\right. & \nu_{N-1}
\end{array}\right) M(f)\right] \text { } \begin{array}{rl}
d_{f} \\
\nu_{1}, \ldots, \nu_{N}
\end{array}\right) M(f) \leqslant N^{d_{f}-1} M(f)
$$

and so,

$$
\begin{aligned}
H(f) & \leqslant N^{d_{f}-1} M(f) \\
L_{1}(f) & \leqslant N^{d_{f}} M(f)
\end{aligned}
$$

Let now m, d_{0}, \ldots, d_{n} be fixed positive integers, $n \in \mathbb{N}$, and let

$$
u_{(m, j)}=\left(u_{m, j, \nu}: \nu \in \mathbb{N}^{m+1},|\nu|=d_{j}\right), \quad j=0, \ldots, n
$$

be systems of variables. In fact $u_{(m, j)}$ is a system of

$$
N_{m, d_{j}}:=\binom{d_{j}+m}{m}
$$

variables.

From Lemma 2.1, by a similar method as in [7], we obtain the following Mahler type inequalities for multihomogeneous polynomials.

Lemma 2.2. Let $f \in \mathbb{Z}\left[u_{(m, 0)}, \ldots, u_{(m, n)}\right]$ be a nonzero polynomial such that f is homogeneous as a polynomial in each system of variables $u_{(m, j)}$. Then for any polynomial $g \in \mathbb{Z}\left[u_{(m, 0)}, \ldots, u_{(m, n)}\right]$ which divides f in $\mathbb{Z}\left[u_{(m, 0)}, \ldots, u_{(m, n)}\right]$ and have degree e_{j} with respect to system $u_{(m, j)}$ for $j=0, \ldots, n$, we have

$$
H(g) \leqslant\left(\prod_{j=0}^{n} N_{m, d_{j}}^{e_{j}-1}\right) M(g) \leqslant\left(\prod_{j=0}^{n} N_{m, d_{j}}^{e_{j}-1}\right) M(f)
$$

and

$$
L_{1}(g) \leqslant\left(\prod_{j=0}^{n} N_{m, d_{j}}^{e_{j}}\right) M(g) \leqslant\left(\prod_{j=0}^{n} N_{m, d_{j}}^{e_{j}}\right) M(f)
$$

Proof. For simplicity $u_{(m, j)}$ we denote by $u_{(j)}$ and $N_{m, d_{j}}-$ by N_{j} for $j=0, \ldots, n$. Let $g \in \mathbb{Z}\left[u_{(0)}, \ldots, u_{(n)}\right]$ be a divisor of f in $\mathbb{Z}\left[u_{(0)}, \ldots, u_{(n)}\right]$ and let $g_{1}=f / g$. By the assumptions, g is a homogeneous polynomial as a polynomial in each $u_{(j)}$ of some degree e_{j} for $j=0, \ldots, n$. Let

$$
\mathscr{I}=\left\{\eta=\left(\eta^{(0)}, \ldots, \eta^{(n)}\right) \in \mathbb{N}^{N_{0}} \times \ldots \times \mathbb{N}^{N_{n}}:\left|\eta^{(j)}\right|=e_{j}\right.
$$

$$
\text { for } j=0, \ldots, n\}
$$

The polynomial g is of the form

$$
g\left(u_{(0)}, \ldots, u_{(n)}\right)=\sum_{\eta \in \mathscr{I}} C_{\eta} J_{\eta}
$$

where $C_{\eta} \in \mathbb{Z}$ and $J_{\eta}=u_{(0)}^{\eta^{(0)}} \cdots u_{(n)}^{\eta^{(n)}}$ for $\eta=\left(\eta^{(0)}, \ldots, \eta^{(n)}\right) \in \mathscr{I}$. So, we may write

$$
g\left(u_{(0)}, \ldots, u_{(n)}\right)=\sum_{\left|\eta^{(0)}\right|=e_{0}} g_{1, \eta^{(0)}}\left(u_{(1)}, \ldots, u_{(n)}\right) u_{(0)}^{\eta^{(0)}}
$$

where $g_{1, \eta^{(0)}} \in \mathbb{Z}\left[u_{(1)}, \ldots, u_{(n)}\right]$ for $\eta^{(0)} \in \mathbb{N}^{N_{0}},\left|\eta^{(0)}\right|=e_{0}$. By induction for $j=1, \ldots, n$ we may write

$$
g_{j, \eta^{(j-1)}}\left(u_{(j)}, \ldots, u_{(n)}\right)=\sum_{\left|\eta^{(j)}\right|=e_{j}} g_{j+1, \eta^{(j)}}\left(u_{(j+1)}, \ldots, u_{(n)}\right) u_{(j)}^{\eta^{(j)}}
$$

where $g_{j+1, \eta^{(j)}} \in \mathbb{Z}\left[u_{(j+1)}, \ldots, u_{(n)}\right]$ for $\eta^{(j)} \in \mathbb{N}^{N_{j}},\left|\eta^{(j)}\right|=e_{j}$. Then any coefficient $C_{\eta}, \eta \in \mathscr{I}$, is a coefficient of some polynomial $g_{n, \eta^{(n-1)}}$. Then applying $n+1$ times Lemma 2.1, we obtain

$$
H(g) \leqslant N_{0}^{e_{0}-1} \cdots N_{n}^{e_{n}-1} M(g)
$$

and

$$
L_{1}(g) \leqslant N_{0}^{e_{0}} \cdots N_{n}^{e_{n}} M(g)
$$

Since g_{1} have integral coefficients, by (7) we have $M\left(g_{1}\right) \geqslant 1$. Then (6) gives the assertion.

3. Height of a multipolynomial Resultant

3.1. Basic notations on a multipolynomial resultant. Recall some notations and facts concerning the resultant for several homogeneous polynomials (see [2], see also [1]).

In this section $x=\left(x_{0}, \ldots, x_{n}\right)$ is a system of $n+1$ variables.
Let d_{0}, \ldots, d_{n} be fixed positive integers and let $u_{(0)}, \ldots, u_{(n)}$ be systems of variables of the form

$$
\begin{equation*}
u_{(j)}=\left(u_{j, \nu}: \nu \in \mathbb{N}^{n+1},|\nu|=d_{j}\right), \quad j=0, \ldots, n, \tag{10}
\end{equation*}
$$

In fact $u_{(m, j)}$ is a system of

$$
\begin{equation*}
N_{d_{j}}:=\binom{d_{j}+n}{n} \tag{11}
\end{equation*}
$$

variables.
Let $f_{0}, \ldots, f_{n} \in \mathbb{C}\left[u_{(0)}, \ldots, u_{(n)}, x\right]$ be homogeneous polynomials in x of degrees d_{0}, \ldots, d_{n}, respectively of the forms

$$
f_{j}\left(u_{(0)}, \ldots, u_{(n)}, x\right)=\sum_{\substack{\nu \in \mathbb{N}^{n+1} \\|\nu|=d_{j}}} u_{j, \nu} x^{\nu}, \quad j=0, \ldots, n .
$$

In fact $f_{j} \in \mathbb{Z}\left[u_{(j)}, x\right]$.
For any $a_{j}=\left(a_{j, \nu}: \nu \in \mathbb{N}^{n+1},|\nu|=d_{j}\right) \in \mathbb{C}^{N_{d_{j}}}$ by, $f_{j, a_{j}} \in \mathbb{C}[x]$ we denote the specialization of f_{j}, i.e., the polynomial $f_{j, a_{j}}(x)=f_{j}\left(a_{j}, x\right)$.
Fact 3.1 ([2], Chapter 13). There exists a unique polynomial $P_{d_{0}, \ldots, d_{n}} \in$ $\mathbb{Z}\left[u_{(0)}, \ldots, u_{(n)}\right]$ such that:
(i) For any $a_{0} \in \mathbb{C}^{N_{d_{0}}}, \ldots, a_{n} \in \mathbb{C}^{N_{d_{n}}}$

$$
P_{d_{0}, \ldots, d_{n}}\left(a_{0}, \ldots, a_{n}\right)=0 \Leftrightarrow f_{0, a_{0}}, \ldots, f_{n, a_{n}} \text { have a common }
$$

nontrivial zero.

(ii) For $a_{0} \in \mathbb{C}^{N_{d_{0}}}, \ldots, a_{n} \in \mathbb{C}^{N_{d_{n}}}$ such that $f_{0, a_{0}}=x_{0}^{d_{0}}, \ldots, f_{n, a_{n}}=x_{n}^{d_{n}}$,

$$
P_{d_{0}, \ldots, d_{n}}\left(a_{0}, \ldots, a_{n}\right)=1 .
$$

(iii) $P_{d_{0}, \ldots, d_{n}}$ is irreducible in $\mathbb{C}\left[u_{(0)}, \ldots, u_{(n)}\right]$.

The polynomial $P_{d_{0}, \ldots, d_{n}}$ in Fact 3.1 is called resultant or multipolynomial resultant and denoted by $\operatorname{Res}_{d_{0}, \ldots, d_{n}}$ or shortly by Res. We will also write $\operatorname{Res}\left(f_{0, a_{0}}, \ldots, f_{n, a_{n}}\right)$ instead of $\operatorname{Res}\left(a_{0}, \ldots, a_{n}\right)$.

Fact 3.2 ([2], Proposition 1.1 in Chapter 13). For any $j=0, \ldots, n$ the resultant $\operatorname{Res}_{d_{0}, \ldots, d_{n}}$ is a homogeneous polynomial in $u_{(j)}$ of degree $d_{0} \cdots d_{j-1} d_{j+1} \cdots d_{n}$.

Set

$$
\delta=d_{0}+\cdots+d_{n}-n
$$

and let

$$
\begin{aligned}
S_{j}=\left\{\nu=\left(\nu_{0}, \ldots, \nu_{n}\right) \in \mathbb{N}^{n+1}:|\nu|=\right. & \delta, \nu_{0}<d_{0}, \ldots, \\
& \left.\nu_{j-1}<d_{j-1}, \nu_{j} \geqslant d_{j}\right\} \quad \text { for } j=0, \ldots, n .
\end{aligned}
$$

Fact 3.3. The sets S_{0}, \ldots, S_{n} are mutually disjoint and

$$
\begin{equation*}
\left\{\nu \in \mathbb{N}^{n+1}:|\nu|=\delta\right\}=S_{0} \cup \cdots \cup S_{n} \tag{12}
\end{equation*}
$$

Consider the following system of equations

$$
\begin{cases}\frac{x^{\nu}}{x_{0}^{d_{0}}} f_{0}\left(u_{(0)}, x\right)=0 & \text { for } \nu \in S_{0} \tag{13}\\ \vdots \\ \frac{x^{\nu}}{x_{n}^{d_{n}}} f_{n}\left(u_{(n)}, x\right)=0 & \text { for } \nu \in S_{n}\end{cases}
$$

Any of the above equation is homegenous of degree δ and depends on

$$
N_{d_{0}, \ldots, d_{n}}=\binom{d_{0}+\cdots+d_{n}}{n}
$$

monomials of degree δ. Let's arrange these monomials in a sequence J_{1}, \ldots, J_{N}. Then (13) one can consider as a system of N linear equations with N indeterminates J_{1}, \ldots, J_{N}. Denote by $\mathscr{D}_{d_{0}, \ldots, d_{n}}$ the matrix of this system of equations and by $D_{d_{0}, \ldots, d_{n}}$ - the determinat of $\mathscr{D}_{d_{0}, \ldots, d_{n}}$. From Fact 3.3 and the definition of $D_{d_{0}, \ldots, d_{n}}$ we easily obtain the following fact.
Fact 3.4. For $a_{j} \in \mathbb{C}^{N_{d_{j}}}$ such that $f_{j, a_{j}}(x)=x_{j}^{d_{j}}, j=0, \ldots, n$, we have

$$
\left|D_{d_{0}, \ldots, d_{n}}\left(a_{0}, \ldots, a_{n}\right)\right|=1
$$

In particular, $D_{d_{0}, \ldots, d_{n}} \neq 0$.
Proof. Indeed, by Fact 3.3, for the assumed specializations $f_{j, a_{j}}, j=0, \ldots, n$, the matrix $\mathscr{D}_{d_{0}, \ldots, d_{n}}\left(f_{0, a_{0}}, \ldots, f_{n, a_{n}}\right)$ have in any row and any column exactly one nonzero entry equal to 1 .

From the definition of $D_{d_{0}, \ldots, d_{n}}$ we see that $D_{d_{0}, \ldots, d_{n}}$ is a homogeneous polynomoal in $u_{(j)}$ of degree equal to the number of elements $\# S_{j}$ of S_{j} and the total degree equal to $N_{d_{0}, \ldots, d_{n}}$. Moreover, we have the following Macaulay result [5 , Theorem 6] (see also [4] and [2, Theorem 1.5 in Chapter 13] for Caley determinantal formula).
Fact 3.5. The polynomial $D_{d_{0}, \ldots, d_{n}}$ is divisible by $\operatorname{Res}_{d_{0}, \ldots, d_{n}}$ in $\mathbb{Z}\left[u_{(0)}, \ldots, u_{(n)}\right]$.
Put

$$
d_{*}=\max \left\{d_{0}, \ldots, d_{n}\right\}
$$

From the definition of the polynomial $D_{d_{0}, \ldots, d_{n}}$ we obtain

Lemma 3.6. $L_{1}\left(D_{d_{0}, \ldots, d_{n}}\right) \leqslant N_{d_{0}}^{\# S_{0}} \cdots N_{d_{n}}^{\# S_{n}} \leqslant\binom{ d_{*}+n}{n}\left(\begin{array}{c}\binom{(n+1) d_{*}}{n}\end{array}\right.$.
Proof. Let $D=D_{d_{0}, \ldots, d_{n}}$ and $N_{j}=N_{d_{j}}$. Monomials of D are of the form

$$
J_{\eta}=C_{\eta} u_{(0)}^{\eta^{(0)}} \cdots u_{(n)}^{\eta^{(n)}}
$$

where $C_{\eta} \in \mathbb{Z}$ for $\eta=\left(\eta^{(0)}, \ldots, \eta^{(n)}\right) \in \mathbb{N}^{N_{0}} \times \ldots \times \mathbb{N}^{N_{n}}$ and $\left|\eta^{(j)}\right|=\# S_{j}$ for $j=0, \ldots, n$. Let $\eta^{(j)}=\left(\eta_{j, 1}, \ldots, \eta_{j, N_{j}}\right)$. Then from definition of D,

$$
\begin{aligned}
\left|C_{\eta}\right| \leqslant \prod_{j=0}^{n}\binom{\# S_{j}}{\eta_{j, 1}}\binom{\# S_{j}-\eta_{j, 1}}{\eta_{j, 2}} \cdots\left(\begin{array}{c}
\# S_{j}-\eta_{j, 1}-\cdots-\eta_{j, N_{j}-1} \\
\eta_{j, N_{j}}
\end{array}\right. & \\
& =\prod_{j=0}^{n}\binom{\# S_{j}}{\eta_{j, 1}, \ldots, \eta_{j, N_{j}}}
\end{aligned}
$$

so

$$
L_{1}(D) \leqslant \sum_{\substack{\eta=\left(\eta^{(0)}, \ldots, \eta^{(n)}\right) \in \mathbb{N}^{N_{0}+\cdots+N_{n}} \\ \eta^{(k)} \mid=\# S_{k} \text { for } k=0, \ldots, n}} \prod_{j=0}^{n}\binom{\# S_{j}}{\eta_{j, 1}, \ldots, \eta_{j, N_{j}}} \leqslant N_{0}^{\# S_{0}} \cdots N_{n}^{\# S_{n}}
$$

which gives the first inequality in the assertion. Since $N_{j} \leqslant\binom{ d_{*}+n}{n}$ and $\# S_{0}+$ $\cdots+\# S_{n}=N_{d_{0}, \ldots, d_{n}} \leqslant\binom{(n+1) d_{*}}{n}$, then we obtain the second inequality in the assertion.
3.2. Multipolynomial resultant for powers of polynomials. Take any $k \in \mathbb{Z}$, $k>0$. The resultant $\operatorname{Res}_{k d_{0}, \ldots, k d_{n}}$ and the discriminant $D_{k d_{0}, \ldots, k d_{n}}$ are polynomials with integer coefficients in a system of variables $w_{k}=\left(w_{(k, 0)}, \ldots, w_{(k, n)}\right)$, where

$$
\begin{equation*}
w_{(k, j)}=\left(w_{k, j, \nu}: \nu \in \mathbb{N}^{n+1},|\nu|=k d_{j}\right) \tag{14}
\end{equation*}
$$

is a system of indeterminate coefficients of the polynomial

$$
F_{k, j}\left(w_{(k, j)}, x\right)=\sum_{\substack{\nu \in \mathbb{N}^{n+1} \\|\nu|=k d_{j}}} w_{k, j, \nu} x^{\nu}, \quad j=0, \ldots, n
$$

In fact $w_{(k, j)}$ is a system of

$$
\begin{equation*}
N_{k d_{j}}:=\binom{k d_{j}+n}{n} \tag{15}
\end{equation*}
$$

variables. From Fact 3.2 we have that $\operatorname{Res}_{k d_{0}, \ldots, k d_{n}}$ is homogeneous in any system of variables $w_{(k, j)}$ of degree

$$
e_{k, j}=k^{n} d_{0} \cdots d_{j-1} d_{j+1} \cdots d_{n}, \quad j=0, \ldots, n
$$

The polynomial $D_{k d_{0}, \ldots, k d_{n}}$ is also homogeneous in any system of variables $w_{(k, j)}$. Let $s_{k, j}$ be the degree of $D_{k d_{0}, \ldots, k d_{n}}$ with respect to $w_{(k, j)}, j=0, \ldots, n$. Obviously

$$
\begin{equation*}
s_{k, 0}+\cdots+s_{k, n}=\binom{k\left(d_{0}+\cdots+d_{n}\right)}{n} \tag{16}
\end{equation*}
$$

Let

$$
\begin{aligned}
\mathscr{I}_{k}=\left\{\eta=\left(\eta^{(0)}, \ldots, \eta^{(n)}\right) \in \mathbb{N}^{N_{k d_{0}}} \times \ldots \times \mathbb{N}^{N_{k d_{n}}}:\left|\eta^{(j)}\right|=s_{k, j}\right. \\
\quad \text { for } j=0, \ldots, n\} .
\end{aligned}
$$

Then $D_{k d_{0}, \ldots, k d_{n}}$ one can write

$$
\begin{equation*}
D_{k d_{0}, \ldots, k d_{n}}=\sum_{\eta \in \mathscr{I}_{k}} C_{\eta} J_{\eta}, \tag{17}
\end{equation*}
$$

where $C_{\eta} \in \mathbb{Z}$ for $\eta \in \mathscr{I}_{k}$ and

$$
\begin{equation*}
J_{\eta}=w_{(k, 0)}^{\eta^{(0)}} \cdots w_{(k, n)}^{\eta^{(n)}} \quad \text { for } \eta=\left(\eta^{(0)}, \ldots, \eta^{(n)}\right) \in \mathscr{I}_{k} . \tag{18}
\end{equation*}
$$

Since

$$
f_{j}^{k}=\sum_{\substack{\nu \in \mathbb{N}^{n+1} \\|\nu|=k d_{j}}} x^{\nu} \sum_{\substack{\nu^{1}, \ldots, \nu^{k} \in \mathbb{N}^{n+1} \\ \nu^{1}+\cdots+\nu^{k}=\nu \\\left|\nu^{1}\right|=\cdots=\left|\nu^{k}\right|=d_{j}}} u_{j, \nu^{1}} \cdots u_{j, \nu^{k}}, \quad j=0, \ldots, n,
$$

then we may define a mapping

$$
W_{k}=\left(W_{(k, 0)}, \ldots, W_{(k, n)}\right): \mathbb{C}^{N_{d_{0}}} \times \cdots \times \mathbb{C}^{N_{d_{n}}} \rightarrow \mathbb{C}^{N_{k d_{0}}} \times \cdots \times \mathbb{C}^{N_{k d_{n}}}
$$

by $W_{(k, j)}=\left(W_{k, j, \nu}: \nu \in \mathbb{N}^{n+1},|\nu|=k d_{j}\right)$ for $j=0, \ldots, n$, and

$$
W_{k, j, \nu}\left(u_{(j)}\right)=\sum_{\substack{\nu^{1}, \ldots, \nu^{k} \in \mathbb{N}^{n+1} \\ \nu^{1}+\cdots+\nu^{k}=\nu \\\left|\nu^{1}\right|=\cdots=\nu^{k} \mid=d_{j}}} u_{j, \nu^{1} \cdots u_{j, \nu^{k}} \quad \text { for } \nu \in \mathbb{N}^{n+1},|\nu|=k d_{j} .}
$$

In other words, $W_{(k, j)}$ is a system of coefficients of f_{j}^{k} as a polynomial in x. So for any positive integer k we may define

$$
\begin{aligned}
R_{k} & =\operatorname{Res}_{k d_{0}, \ldots, k d_{n}}\left(f_{0}^{k}, \ldots, f_{n}^{k}\right) \\
D_{k} & =D_{k d_{0}, \ldots, k d_{n}}\left(f_{0}^{k}, \ldots, f_{n}^{k}\right)
\end{aligned}
$$

More precisely,

$$
\begin{aligned}
R_{k} & =\operatorname{Res}_{k d_{0}, \ldots, k d_{n}} \circ W_{k}, \\
D_{k} & =D_{k d_{0}, \ldots, k d_{n}} \circ W_{k}
\end{aligned}
$$

Then from (17) and (18) we have

$$
\begin{equation*}
D_{k}=\sum_{\eta=\left(\eta^{(0)}, \ldots, \eta^{(n)}\right) \in \mathscr{I}_{k}} C_{\eta} W_{(k, 0)}^{\eta^{(0)}} \cdots W_{(k, n)}^{\eta^{(n)}} . \tag{19}
\end{equation*}
$$

From Fact 3.4 we have
Fact 3.7. For any positive integer k we have $D_{k} \neq 0$.
From [2, Proposition 1.3 in Chapter 13] and [1, Theorem 3.2], we immediately obtain

Fact 3.8. For any positive integer k we have

$$
\operatorname{Res}_{k d_{0}, \ldots, k d_{n}}\left(f_{0}^{k}, \ldots, f_{n}^{k}\right)=\operatorname{Res}_{d_{0}, \ldots, d_{n}}\left(f_{0}, \ldots, f_{n}\right)^{k^{n+1}}
$$

Recall that $d_{*}=\max \left\{d_{0}, \ldots, d_{n}\right\}$. Put

$$
N_{*, k}=\binom{k d_{*}+n}{n}, \quad N_{k}^{*}=\binom{(n+1) k d_{*}}{n}, \quad k \in \mathbb{Z}, k>0 .
$$

Lemma 3.9. $L_{1}\left(D_{k}\right) \leqslant\left(N_{*, 1}\right)^{k N_{k}^{*}} L_{1}\left(D_{k d_{0}, \ldots, k d_{n}}\right)$.
Proof. Indeed, for any $j=0, \ldots, n$ and any $\nu \in \mathbb{N}^{n+1},|\nu|=k d_{j}$ the polynomial $W_{k, j, \nu}$ consists of at most $\left(N_{*, 1}\right)^{k}$ monomials with coefficients equal to 1 , i.e., $\left(N_{*, 1}\right)^{k}$ is not smaller that

$$
\#\left\{\left(\nu^{1}, \ldots, \nu^{k}\right) \in\left(\mathbb{N}^{n+1}\right)^{k}: \nu^{1}+\cdots+\nu^{k}=\nu,\left|\nu^{1}\right|=\cdots=\left|\nu^{k}\right|=d_{j}\right\}
$$

for $j=0, \ldots, n$. So from (19) we easily see that

$$
L_{1}\left(D_{k}\right) \leqslant \sum_{\eta=\left(\eta^{(0)}, \ldots, \eta^{(n)}\right) \in \mathscr{I}_{k}}\left|C_{\eta}\right|\left(N_{*, 1}\right)^{k\left|\eta^{(0)}\right|} \cdots\left(N_{*, 1}\right)^{k\left|\eta^{(n)}\right|}
$$

Then (16) easily gives the assertion.
3.3. Height of a multipolynomial resultant. From Lemmas 2.2, 3.6 and 3.9 and Fact 3.8 we have

Lemma 3.10. For any $k \in \mathbb{Z}, k>0$ we have

$$
\begin{align*}
M\left(\operatorname{Res}_{d_{0}, \ldots, d_{n}}\right) & \leqslant\left(N_{*, 1}\right)^{N_{k}^{*} / k^{n}}\left(N_{*, k}\right)^{N_{k}^{*} / k^{n+1}} \tag{20}\\
H\left(\operatorname{Res}_{d_{0}, \ldots, d_{n}}\right) & \leqslant\left(N_{*, 1}\right)^{(n+1) d_{*}^{n}-n-1} M\left(\operatorname{Res}_{d_{0}, \ldots, d_{n}}\right) \tag{21}\\
L_{1}\left(\operatorname{Res}_{d_{0}, \ldots, d_{n}}\right) & \leqslant\left(N_{*, 1}\right)^{(n+1) d_{*}^{n}} M\left(\operatorname{Res}_{d_{0}, \ldots, d_{n}}\right) \tag{22}
\end{align*}
$$

Proof. Let $e_{j}=d_{0} \cdots d_{j-1} d_{j+1} \cdots d_{n}$ for $j=0, \ldots, n$. By Lemma 2.2 and (6) we obtain

$$
\begin{aligned}
& H\left(\operatorname{Res}_{d_{0}, \ldots, d_{n}}\right) \leqslant\left(\prod_{j=0}^{n}\left(N_{d_{j}}\right)^{e_{j}-1}\right) M\left(\operatorname{Res}_{d_{0}, \ldots, d_{n}}^{k^{n+1}}\right)^{1 / k^{n+1}}, \\
& L_{1}\left(\operatorname{Res}_{d_{0}, \ldots, d_{n}}\right) \leqslant\left(\prod_{j=0}^{n}\left(N_{d_{j}}\right)^{e_{j}}\right) M\left(\operatorname{Res}_{d_{0}, \ldots, d_{n}}^{k^{n+1}}\right)^{1 / k^{n+1}} .
\end{aligned}
$$

Since $e_{0}+\cdots+e_{n} \leqslant(n+1) d_{*}^{n}$, then from the above we have

$$
\begin{aligned}
& H\left(\operatorname{Res}_{d_{0}, \ldots, d_{n}}\right) \leqslant\left(N_{*, 1}\right)^{(n+1) d_{*}^{n}-n-1} M\left(\operatorname{Res}_{d_{0}, \ldots, d_{n}}^{k^{n+1}}\right)^{1 / k^{n+1}}, \\
& L_{1}\left(\operatorname{Res}_{d_{0}, \ldots, d_{n}}\right) \leqslant\left(N_{*, 1}\right)^{(n+1) d_{*}^{n}} M\left(\operatorname{Res}_{d_{0}, \ldots, d_{n}}^{k^{n+1}}\right)^{1 / k^{n+1}} .
\end{aligned}
$$

This, together with Fact 3.8, gives (21) and (22).

From Fact 3.8 we also have $M\left(\operatorname{Res}_{d_{0}, \ldots, d_{n}}^{k^{n+1}}\right)^{1 / k^{n+1}}=M\left(R_{k}\right)^{1 / k^{n+1}}$, and since $M\left(R_{k}\right) \leqslant M\left(D_{k}\right)$ (by (7) and Facts 3.5 and 3.7), so (9) gives

$$
\begin{equation*}
M\left(\operatorname{Res}_{d_{0}, \ldots, d_{n}}^{k_{n}^{n+1}}\right)^{1 / k^{n+1}} \leqslant L_{2}\left(D_{k}\right)^{1 / k^{n+1}} \tag{23}
\end{equation*}
$$

By Lemma 3.9 we have

$$
\begin{equation*}
L_{1}\left(D_{k}\right) \leqslant\left(N_{*, 1}\right)^{k N_{k}^{*}} L_{1}\left(D_{k d_{0}, \ldots, k d_{n}}\right) \tag{24}
\end{equation*}
$$

Since

$$
\begin{aligned}
& N_{k d_{j}} \leqslant N_{*, k}, \quad \text { for } j=0, \ldots, n, \\
& N_{k d_{0}, \ldots, k d_{n}} \leqslant N_{k}^{*},
\end{aligned}
$$

so, from Lemma 3.6 we obtain

$$
L_{1}\left(D_{k d_{0}, \ldots, k d_{n}}\right) \leqslant\left(N_{*, k}\right)^{N_{k}^{*}} \quad \text { for } k>0 .
$$

Since $L_{2}\left(D_{k}\right) \leqslant L_{1}\left(D_{k}\right)$ then (23) and (24) gives (20).
In general $N_{k}^{*} \leqslant(n+1)!\left(k d_{*}\right)^{n}$. It turns out that asymptotically this number has better properties.

Lemma 3.11.

$$
\lim _{k \rightarrow \infty} \frac{N_{k}^{*}}{k^{n}}=\frac{(n+1)^{n} d_{*}^{n}}{n!}<\frac{e^{n+1}}{\sqrt{2 \pi n}} d_{*}^{n} .
$$

Proof. Indeed,

$$
\frac{N_{k}^{*}}{k^{n}}=\frac{\prod_{j=1}^{n}\left[(n+1) k d_{*}-n+j\right]}{n!k^{n}},
$$

so,

$$
\lim _{k \rightarrow \infty} \frac{N_{k}^{*}}{k^{n}}=\frac{(n+1)^{n} d_{*}^{n}}{n!}=\left(\frac{n+1}{n}\right)^{n} \frac{n^{n}}{n!} d_{*}^{n}<e \frac{n^{n}}{n!} d_{*}^{n} .
$$

Since from Stirling formula,

$$
\frac{n^{n}}{n!} \leqslant \frac{e^{n-1 /(12 n+1)}}{\sqrt{2 \pi n}}
$$

then we obtain the assertion.

Lemmas 3.10 and 3.11 gives the main result of this paper.
Theorem 3.12. Let $d_{*}=\max \left\{d_{0}, \ldots, d_{n}\right\}$ and $K_{n}=e^{n+1} / \sqrt{2 \pi n}$, $n>0$. Then

$$
\begin{align*}
& M\left(\operatorname{Res}_{d_{0}, \ldots, d_{n}}\right) \leqslant\left(d_{*}+1\right)^{n K_{n} d_{*}^{n}}, \tag{25}\\
& H\left(\operatorname{Res}_{d_{0}, \ldots, d_{n}}\right) \leqslant\left(d_{*}+1\right)^{n\left(K_{n}+n+1\right) d_{*}^{n}-n(n+1)}, \tag{26}\\
& L_{1}\left(\operatorname{Res}_{d_{0}, \ldots, d_{n}}\right) \leqslant\left(d_{*}+1\right)^{n\left(K_{n}+n+1\right) d_{*}^{n}} . \tag{27}
\end{align*}
$$

Moreover, if $n \geqslant 2$ and $d_{*} \geqslant 4$, then

$$
\begin{align*}
M\left(\operatorname{Res}_{d_{0}, \ldots, d_{n}}\right) & \leqslant\left(d_{*}\right)^{n K_{n} d_{*}^{n}}, \\
H\left(\operatorname{Res}_{d_{0}, \ldots, d_{n}}\right) & \leqslant\left(d_{*}\right)^{n\left(K_{n}+n+1\right) d_{*}^{n}-n(n+1)}, \tag{28}\\
L_{1}\left(\operatorname{Res}_{d_{0}, \ldots, d_{n}}\right) & \leqslant\left(d_{*}\right)^{n\left(K_{n}+n+1\right) d_{*}^{n}} .
\end{align*}
$$

Proof. From Lemma 3.10 for nay $k \in \mathbb{Z}, k>0$ we have

$$
\begin{aligned}
& M\left(\operatorname{Res}_{d_{0}, \ldots, d_{n}}\right) \leqslant\left(N_{*, 1}\right)^{N_{k}^{*} / k^{n}}\left(N_{*, k}\right)^{N_{k}^{*} / k^{n+1}} \\
& H\left(\operatorname{Res}_{d_{0}, \ldots, d_{n}}\right) \leqslant\left(N_{*, 1}\right)^{(n+1) d_{*}^{n}-n-1}\left(N_{*, 1}\right)^{N_{k}^{*} / k^{n}}\left(N_{*, k}\right)^{N_{k}^{*} / k^{n+1}} \\
& L_{1}\left(\operatorname{Res}_{d_{0}, \ldots, d_{n}}\right) \leqslant\left(N_{*, 1}\right)^{(n+1) d_{*}^{n}}\left(N_{*, 1}\right)^{N_{k}^{*} / k^{n}}\left(N_{*, k}\right)^{N_{k}^{*} / k^{n+1}}
\end{aligned}
$$

Since $1 \leqslant N_{*, k} \leqslant\left(k d_{*}+1\right)^{n}$, then

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(N_{*, k}\right)^{1 / k}=1 \tag{29}
\end{equation*}
$$

so passing to the limit as $k \rightarrow \infty$ in the above inequalities, by Lemma 3.11, we obtain (25), (26) and (27).

Since for $n \geqslant 2$ and $d_{*} \geqslant 4$ we have $N_{*, 1} \leqslant d_{*}^{n}$ then we obtain the second part of the assertion (28).

Remark 3.13. The estimation (27) of $L_{1}\left(\operatorname{Res}_{d_{0}, \ldots, d_{n}}\right)$ is not a direct consequence of the estimation (26) of the height $H\left(\operatorname{Res}_{d_{0}, \ldots, d_{n}}\right)$ because the number of coefficients of $\operatorname{Res}_{d_{0}, \ldots, d_{n}}$ can be bigger than $\left(d_{*}+1\right)^{n(n+1)}$. The number of coefficients of the resultant can be estimated by

$$
E_{d_{0}, \ldots, d_{n}}:=\prod_{j=0}^{n}\binom{\binom{d_{j}+n}{n}+d_{0} \cdots d_{j-1} d_{j+1} \cdots d_{n}}{d_{0} \cdots d_{j-1} d_{j+1} \cdots d_{n}} \leqslant\left(d_{*}+1\right)^{n(n+1) d_{*}^{n}}
$$

4. Gelfond-Mahler type inequalities for homogeneous polynomials

As a corollaries from Lemma 2.2 we obtain the following Gelfond-Mahler type theorems.

Corollary 4.1. Let $f \in \mathbb{Z}\left[u_{(m, 0)}, \ldots, u_{(m, n)}\right]$ be a nonzero polynomial such that f is homogeneous of degree $s_{j}>0$ as a polynomial in each system of variables $u_{(m, j)}$. Then for any polynomials $f_{1}, \ldots, f_{k} \in \mathbb{Z}\left[u_{(m, 0)}, \ldots, u_{(m, n)}\right]$ such that $f=f_{1} \cdots f_{k}$ we have

$$
\begin{align*}
H\left(f_{1}\right) \cdots H\left(f_{k}\right) \leqslant\left(\prod_{j=0}^{n} N_{m, d_{j}}^{s_{j}-1}\right) & M(f) \tag{30}\\
& \leqslant\left(\prod_{j=0}^{n} N_{m, d_{j}}^{s_{j}-1}\right)\left(\prod_{j=0}^{n}{\sqrt{N_{m, d_{j}}+1}}^{s_{j}}\right) H(f)
\end{align*}
$$

and

$$
\begin{equation*}
L_{1}\left(f_{1}\right) \cdots L_{1}\left(f_{k}\right) \leqslant\left(\prod_{j=0}^{n} N_{m, d_{j}}^{s_{j}}\right) M(f) \leqslant\left(\prod_{j=0}^{n} N_{m, d_{j}}^{s_{j}}\right) L_{1}(f) \tag{31}
\end{equation*}
$$

Proof. The left hand inequalities in (30) and (31) immediately follows from Lemma 2.2, because $M\left(f_{1}\right) \cdots M\left(f_{k}\right)=M(f)$ from (6). Since the polynomial f is homogeneous with respoct to $u_{(m, j)}$ of degree $s_{j}, j=0, \ldots, n$, then from (9) we have

$$
M(f) \leqslant\left(\prod_{j=0}^{n} \sqrt{\binom{s_{j}+N_{m, d_{j}}}{N_{m, d_{j}}}}\right) H(f) \leqslant\left(\prod_{j=0}^{n}{\sqrt{N_{m, d_{j}}+1}}^{s_{j}}\right) H(f)
$$

This gives the right hand inequalities in (30) and (31) and ends the proof.

Applying Corollary 4.1 for $n=0, d_{0}=1$ and $m=N-1$ and a homogenisation $f^{*}\left(x_{0}, \ldots, x_{m}\right):=x_{0}^{\operatorname{deg} f} f\left(x_{1} / x_{0} \ldots, x_{m} / x_{0}\right)$ of a polynomial $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{m}\right]$ we obtain the following corollary.

Corollary 4.2. Let $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{m}\right]$ be a nonzero polynomial of degree $s>0$. Then for any polynomials $f_{1}, \ldots, f_{k} \in \mathbb{Z}\left[x_{1}, \ldots, x_{m}\right]$ such that $f=f_{1} \cdots f_{k}$ we have

$$
H\left(f_{1}\right) \cdots H\left(f_{k}\right) \leqslant(N+1)^{s-1} M\left(f^{*}\right) \leqslant(N+1)^{s-1} \sqrt{N+2}^{s} H(f)
$$

and

$$
L_{1}\left(f_{1}\right) \cdots L_{1}\left(f_{k}\right) \leqslant(N+1)^{s} M\left(f^{*}\right) \leqslant(N+1)^{s} L_{1}(f)
$$

References

[1] D.A. Cox, J. Little, D. O'Shea, Using algebraic geometry. Second edition, Graduate Texts in Mathematics, 185. Springer, New York, 2005.
[2] I.M. Gelfand, M.M. Kapranov, A,V. Zelevinsky, Discriminants, resultants, and multidimensional determinants. Reprint of the 1994 edition. Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA, 2008. x+523 pp.
[3] A.P. Gelfond, Transtsendentnye i algebraitcheskie tchisla (Moscow, 1952)
[4] J.P. Jouanolou, Formes d'inertie et résultant: un formulaire. Adv. Math. 126 (1997), no. 2, 119-250.
[5] F. Macaulay, On some formulas in elimination, Proc. London Math. Soc. 3 (1902), 3-27.
[6] K. Mahler, An application of Jensen's formula to polynomials. Mathematika 71960 98-100.
[7] K. Mahler, On some inequalities for polynomials in several variables. J. London Math. Soc. 37 (1962), 341-344.
[8] C.J. Smyth, A Kronecker-type theorem for complex polynomials in several variables. Canad. Math. Bull. 24 (1981), no. 4, 447-452.
[9] M. Sombra, The height of the mixed sparse resultant. Amer. J. Math. 126 (2004), no. 6, 1253-1260.
(Aleksandra Gala-Jaskórzyńska) Faculty of Mathematics and Computer Science, University of Łódź, S. Banacha 22, 90-238 Lódź, POLAND

E-mail address: agjaskorzynska@math.uni.lodz.pl
(Krzysztof Kurdyka) Laboratoire de Mathematiques (LAMA) Universié Savoie Mont Blanc, UMR-5127 de CNRS 73-376 Le Bourget-du-Lac cedex FRANCE

E-mail address: Krzysztof.Kurdyka@univ-savoie.fr
(Katarzyna Rudnicka) Faculty of Mathematics and Computer Science, University of Łódź, S. Banacha 22, 90-238 Łódź, POLAND

E-mail address: kkuta@math.uni.lodz.pl
(Stanisław Spodzieja) Faculty of Mathematics and Computer Science, University of Lódź, S. Banacha 22, 90-238 Lódź, POLAND

E-mail address: stanislaw.spodzieja@wmii.uni.lodz.pl

[^0]: 2010 Mathematics Subject Classification. Primary 13P15; Secondary 11C20, 12D10.
 Key words and phrases. Polynomial, homogeneous polynomial, multipolynomial resultant, Mahler measure, height of a polynomial.

