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GELFOND-MAHLER INEQUALITY

FOR MULTIPOLYNOMIAL RESULTANTS

ALEKSANDRA GALA-JASKÓRZYŃSKA, KRZYSZTOF KURDYKA,
KATARZYNA RUDNICKA, AND STANIS LAW SPODZIEJA

Abstract. We give a bound of the height of a multipolynomial resultant in

terms of polynomial degrees, the resultant of which applies. Additionally we
give a Gelfond-Mahler type bound of the height of homogeneous divisors of a

homogeneous polynomial.

1. Introduction

Let f ∈ Z[u], where u = (u1, . . . , uN ) is a system of variables and Z is the ring
of integers, be a nonzero polynomial of the form

(1) f(u) =
∑
|ν|6df

aνu
ν ,

where aν ∈ Z, uν = uν11 · · ·u
νN
N and |ν| = ν1 + · · ·+ νN for ν = (ν1, . . . , νN ) ∈ NN

and N denotes the set of nonnegative integers. By the height of the polynomial f
we mean

H(f) := max{|aν | : ν ∈ NN , |ν| ≤ df}.

Let f1, . . . , fr ∈ Z[u] be nonzero polynomials, and let dj be the degree of f =
f1 · · · fr with respect to uj for j = 1, . . . , N .

A.P. Gelfond [3] obtained the following bound.

Theorem 1.1 (Gelfond).

(2) H(f1) · · ·H(fr) 6 2d1+···+dN−k
√

(d1 + 1) · · · (dN + 1)H(f)

where k is the number of variables uj that genuinely appear in f .
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K. Mahler [6] introduced a measure M(f) of a polynomial f ∈ C[u] (currently
called Mahler measure, see Section 2.1) and in [7] reproved (2) and proved the
following

Theorem 1.2 (Mahler). Under notations of Theorem 1.1,

(3) H(f) 6 2d1+···+dN−kM(f).

Moreover,

(4) L1(f1) · · ·L1(fr) 6 2d1+···+dNM(f) 6 2d1+···+dNL1(f),

where L1(f) :=
∑
|ν|6df |aν | is the L1-norm of a polynomial f of the form (1).

The aim of the article is to obtain a similar to the above-described estimates
for the height, L1-norms and Mahler’s measures of a resultant for systems of
homogeneous forms. More precisely let d0, . . . , dn be fixed positive integers and
let f0, . . . , fn be a system of homogeneous polynomials in x = (x0, . . . , xn) with
indeterminate coefficients of degrees d0, . . . , dn in x, respectively. By a resul-
tant Resd0,...,dn we mean the unique irreducible polynomial in the coefficients of
f0, . . . , fn with integral coefficients such that for any specializations f0,a0 , . . . , fn,an
of f0, . . . , fn, the value Resd0,...,dn(f0,a0 , . . . , fn,an) is equal to zero if and only if
the polynomials f0,a0 , . . . , fn,an have a common nontrivial zero. For basic notations
and properties of the resultants, see Section 3.1 and for more detailed description
on the resultant see for instance [2]. The main result of this paper is Theorem 3.12
which says that:

M(Resd0,...,dn) 6 (d∗ + 1)nKnd
n
∗ ,

H(Resd0,...,dn) 6 (d∗ + 1)n(Kn+n+1)dn∗−n(n+1),

L1(Resd0,...,dn) 6 (d∗ + 1)n(Kn+n+1)dn∗ ,

where Kn = en+1/
√

2πn and d∗ = max{d0, . . . , dn}. Moreover if n > 2 and d∗ > 4
then we have the following estimates:

M(Resd0,...,dn) 6 (d∗)
nKnd

n
∗ ,

H(Resd0,...,dn) 6 (d∗)
n(Kn+n+1)dn∗−n(n+1),

L1(Resd0,...,dn) 6 (d∗)
n(Kn+n+1)dn∗ .

Note that the above estimates of L1(Resd0,...,dn) are not a direct consequences of
the estimates of H(Resd0,...,dn) (see Remark 3.13).

M. Sombra in [9], as a corollary from a study of the height of the mixed sparse
resultant, gave an estimation of H(Resd,...,d):

H(Resd....,d) 6 (d+ 1)n(n+1)!dn .

Since Kn +n+ 1 = n+ 1 + en+1/
√

2πn < (n+ 1)! for n > 3, so the estimation (26)
is more explicit than the above for n > 3.

The paper is organized as follows. In Section 2 we collect basic notations con-
cering the Mahler measure of a polynomial and we prove a Mahler type bounds for
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the height and the L1-norm of multihomogeneous polynomials (see Lemma 2.2).
The proof of Theorem 3.12 we give in Section 3. The crucial role in the proof plays
an estimation of the L1 norm of the Macaulay discriminant of a coefficients matrix
for a powers of polynomials f0, . . . , fn (see Lemma 3.9).

Additionally, in Section 4 we give Corollaries 4.1 and 4.2 which are versions
of Theorems 1.1 and 1.2 for the multihomogeneous and homogeneous polynomials
cases.

2. Auxiliary results

2.1. Notations. Let f ∈ C[u], where u = (u1, . . . , uN ) is a system of variables, be
a nonzero polynomial of the form

(5) f(u) =
∑
|ν|6df

aνu
ν ,

where for ν = (ν1, . . . , νN ) ∈ NN the coefficient aν is a complex number and we
put |ν| = ν1 + · · ·+ νN and uν = uν11 · · ·u

νN
N .

In this section I denotes the interval [0, 1] and i the imaginary unit (i.e., i2 = −1).
Let e : IN → CN be a mapping defined by

e(t) = (exp(2πt1i), . . . , exp(2πtN i)) for t = (t1, . . . , tN ) ∈ IN .

For a complex polynomial f ∈ C[u], the number

M(f) = exp

(∫
IN

log |f(e(t))|dt
)

is called the Mahler measure of f (see [7]). A significient property of the Mahler
measure is the following (see [7]): for f, g ∈ C[u],

(6) M(fg) = M(f)M(g).

Moreover, if f ∈ Z[u], f 6= 0, then (see for instance [8, Corollary 2]),

(7) M(f) > 1.

By L2-norm of a polynomial f ∈ C[u] we mean

L2(f) =

(∫
IN
|f(e(t))|2dt

)1/2

.

For a polynomial f ∈ C[u] of the form (5) we have

(8) L2(f) =

 ∑
|ν|6df

|aν |2
1/2

,

By Jensen’s inequality we obtain

(9) M(f) 6 L2(f).
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2.2. Mahler type inequalities for multihomogeneous polynomials. By
analogous argument as in [7] we obtain the following lemma.

Lemma 2.1. Let f ∈ C[u], where u = (u1, . . . , uN ), be a homogeneous polynomial
of degree df > 0 of the form

f(u) =
∑
|ν|=df

aνu
ν .

Then there are homogeneous polynomials fk1,...,k` ∈ C[u`+1, . . . , uN ], with
deg fk1,...,k` = df − k1 − · · · − k` for k1 + · · · + k` 6 df , ` = 1, . . . , N , such
that

f(u1, . . . , uN ) =

df∑
k1=0

fk1(u2, . . . , uN )uk11

fk1,...,k`−1
(u`, . . . , uN ) =

df−k1−···−k`−1∑
k`=0

fk1,...,k`(u`+1, . . . , uN )uk`` .

Moreover, for any ν = (ν1, . . . , νN ) ∈ NN , |ν| = df , we have

|aν | = |fν | 6
(
df − ν1 − . . .− νN−1

νN

)
M(fν1,...,νN−1

),

M(fν1) 6

(
df
ν1

)
M(f),

M(fν1,...,ν`) 6

(
df − ν1 − · · · − ν`−1

ν`

)
M(fν1,...,ν`−1

), 2 6 ` 6 N.

In particular,

|aν | 6
(
df
ν1

)(
df − ν1

ν2

)
· · ·
(
df − ν1 − · · · − νN−1

νN

)
M(f)

6

(
df

ν1, . . . , νN

)
M(f) 6 Ndf−1M(f)

and so,

H(f) 6 Ndf−1M(f),

L1(f) 6 NdfM(f).

Let now m, d0, . . . , dn be fixed positive integers, n ∈ N, and let

u(m,j) = (um,j,ν : ν ∈ Nm+1, |ν| = dj), j = 0, . . . , n,

be systems of variables. In fact u(m,j) is a system of

Nm,dj :=

(
dj +m

m

)
variables.



GELFOND-MAHLER INEQUALITY FOR RESULTANTS 83

From Lemma 2.1, by a similar method as in [7], we obtain the following Mahler
type inequalities for multihomogeneous polynomials.

Lemma 2.2. Let f ∈ Z[u(m,0), . . . , u(m,n)] be a nonzero polynomial such that f
is homogeneous as a polynomial in each system of variables u(m,j). Then for any
polynomial g ∈ Z[u(m,0), . . . , u(m,n)] which divides f in Z[u(m,0), . . . , u(m,n)] and
have degree ej with respect to system u(m,j) for j = 0, . . . , n, we have

H(g) 6

 n∏
j=0

N
ej−1
m,dj

M(g) 6

 n∏
j=0

N
ej−1
m,dj

M(f)

and

L1(g) 6

 n∏
j=0

N
ej
m,dj

M(g) 6

 n∏
j=0

N
ej
m,dj

M(f).

Proof. For simplicity u(m,j) we denote by u(j) and Nm,dj – by Nj for j = 0, . . . , n.
Let g ∈ Z[u(0), . . . , u(n)] be a divisor of f in Z[u(0), . . . , u(n)] and let g1 = f/g. By
the assumptions, g is a homogeneous polynomial as a polynomial in each u(j) of
some degree ej for j = 0, . . . , n. Let

I = {η = (η(0), . . . , η(n)) ∈ NN0 × . . .× NNn : |η(j)| = ej

for j = 0, . . . , n}.
The polynomial g is of the form

g(u(0), . . . , u(n)) =
∑
η∈I

CηJη,

where Cη ∈ Z and Jη = uη
(0)

(0) · · ·u
η(n)

(n) for η = (η(0), . . . , η(n)) ∈ I . So, we may

write

g(u(0), . . . , u(n)) =
∑

|η(0)|=e0

g1,η(0)(u(1), . . . , u(n))u
η(0)

(0) ,

where g1,η(0) ∈ Z[u(1), . . . , u(n)] for η(0) ∈ NN0 , |η(0)| = e0. By induction for
j = 1, . . . , n we may write

gj,η(j−1)(u(j), . . . , u(n)) =
∑

|η(j)|=ej

gj+1,η(j)(u(j+1), . . . , u(n))u
η(j)

(j) ,

where gj+1,η(j) ∈ Z[u(j+1), . . . , u(n)] for η(j) ∈ NNj , |η(j)| = ej . Then any coefficient
Cη, η ∈ I , is a coefficient of some polynomial gn,η(n−1) . Then applying n+1 times
Lemma 2.1, we obtain

H(g) 6 Ne0−1
0 · · ·Nen−1

n M(g)

and
L1(g) 6 Ne0

0 · · ·Nen
n M(g).

Since g1 have integral coefficients, by (7) we have M(g1) > 1. Then (6) gives the
assertion. �
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3. Height of a multipolynomial resultant

3.1. Basic notations on a multipolynomial resultant. Recall some notations
and facts concerning the resultant for several homogeneous polynomials (see [2],
see also [1]).

In this section x = (x0, . . . , xn) is a system of n+ 1 variables.

Let d0, . . . , dn be fixed positive integers and let u(0), . . . , u(n) be systems of vari-
ables of the form

(10) u(j) = (uj,ν : ν ∈ Nn+1, |ν| = dj), j = 0, . . . , n,

In fact u(m,j) is a system of

(11) Ndj :=

(
dj + n

n

)
variables.

Let f0, . . . , fn ∈ C[u(0), . . . , u(n), x] be homogeneous polynomials in x of degrees
d0, . . . , dn, respectively of the forms

fj(u(0), . . . , u(n), x) =
∑

ν∈Nn+1

|ν|=dj

uj,νx
ν , j = 0, . . . , n.

In fact fj ∈ Z[u(j), x].

For any aj = (aj,ν : ν ∈ Nn+1, |ν| = dj) ∈ CNdj by, fj,aj ∈ C[x] we denote the
specialization of fj , i.e., the polynomial fj,aj (x) = fj(aj , x).

Fact 3.1 ([2], Chapter 13). There exists a unique polynomial Pd0,...,dn ∈
Z[u(0), . . . , u(n)] such that:

(i) For any a0 ∈ CNd0 , . . . , an ∈ CNdn

Pd0,...,dn(a0, . . . , an) = 0 ⇔ f0,a0 , . . . , fn,an have a common

nontrivial zero.

(ii) For a0 ∈ CNd0 , . . . , an ∈ CNdn such that f0,a0 = xd00 , . . . , fn,an = xdnn ,

Pd0,...,dn(a0, . . . , an) = 1.

(iii) Pd0,...,dn is irreducible in C[u(0), . . . , u(n)].

The polynomial Pd0,...,dn in Fact 3.1 is called resultant or multipolynomial
resultant and denoted by Resd0,...,dn or shortly by Res. We will also write
Res(f0,a0 , . . . , fn,an) instead of Res(a0, . . . , an).

Fact 3.2 ([2], Proposition 1.1 in Chapter 13). For any j = 0, . . . , n the resultant
Resd0,...,dn is a homogeneous polynomial in u(j) of degree d0 · · · dj−1dj+1 · · · dn.
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Set
δ = d0 + · · ·+ dn − n,

and let

Sj = {ν = (ν0, . . . , νn) ∈ Nn+1 : |ν| = δ, ν0 < d0, . . . ,

νj−1 < dj−1, νj > dj} for j = 0, . . . , n.

Fact 3.3. The sets S0, . . . , Sn are mutually disjoint and

(12) {ν ∈ Nn+1 : |ν| = δ} = S0 ∪ · · · ∪ Sn.

Consider the following system of equations

(13)


xν

x
d0
0

f0(u(0), x) = 0 for ν ∈ S0

...

xν

xdnn
fn(u(n), x) = 0 for ν ∈ Sn.

Any of the above equation is homegenous of degree δ and depends on

Nd0,...,dn =

(
d0 + · · ·+ dn

n

)
monomials of degree δ. Let’s arrange these monomials in a sequence J1, . . . , JN .
Then (13) one can consider as a system ofN linear equations withN indeterminates
J1, . . . , JN . Denote by Dd0,...,dn the matrix of this system of equations and by
Dd0,...,dn – the determinat of Dd0,...,dn . From Fact 3.3 and the definition of Dd0,...,dn

we easily obtain the following fact.

Fact 3.4. For aj ∈ CNdj such that fj,aj (x) = x
dj
j , j = 0, . . . , n, we have

|Dd0,...,dn(a0, . . . , an)| = 1,

In particular, Dd0,...,dn 6= 0.

Proof. Indeed, by Fact 3.3, for the assumed specializations fj,aj , j = 0, . . . , n,
the matrix Dd0,...,dn(f0,a0 , . . . , fn,an) have in any row and any column exactly one
nonzero entry equal to 1. �

From the definition of Dd0,...,dn we see that Dd0,...,dn is a homogeneous poly-
nomoal in u(j) of degree equal to the number of elements #Sj of Sj and the total
degree equal to Nd0,...,dn . Moreover, we have the following Macaulay result [5, The-
orem 6] (see also [4] and [2, Theorem 1.5 in Chapter 13] for Caley determinantal
formula).

Fact 3.5. The polynomial Dd0,...,dn is divisible by Resd0,...,dn in Z[u(0), . . . , u(n)].

Put
d∗ = max{d0, . . . , dn}.

From the definition of the polynomial Dd0,...,dn we obtain
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Lemma 3.6. L1(Dd0,...,dn) 6 N#S0

d0
· · ·N#Sn

dn
6
(
d∗+n
n

)((n+1)d∗
n )

.

Proof. Let D = Dd0,...,dn and Nj = Ndj . Monomials of D are of the form

Jη = Cηu
η(0)

(0) · · ·u
η(n)

(n) ,

where Cη ∈ Z for η = (η(0), . . . , η(n)) ∈ NN0 × . . . × NNn and |η(j)| = #Sj for

j = 0, . . . , n. Let η(j) = (ηj,1, . . . , ηj,Nj ). Then from definition of D,

|Cη| 6
n∏
j=0

(
#Sj
ηj,1

)(
#Sj − ηj,1

ηj,2

)
· · ·
(

#Sj − ηj,1 − · · · − ηj,Nj−1

ηj,Nj

)

=
n∏
j=0

(
#Sj

ηj,1, . . . , ηj,Nj

)
,

so

L1(D) 6
∑

η=(η(0),...,η(n))∈NN0+···+Nn

|η(k)|=#Sk for k=0,...,n

n∏
j=0

(
#Sj

ηj,1, . . . , ηj,Nj

)
6 N#S0

0 · · ·N#Sn
n ,

which gives the first inequality in the assertion. Since Nj 6
(
d∗+n
n

)
and #S0 +

· · · + #Sn = Nd0,...,dn 6
(

(n+1)d∗
n

)
, then we obtain the second inequality in the

assertion. �

3.2. Multipolynomial resultant for powers of polynomials. Take any k ∈ Z,
k > 0. The resultant Reskd0,...,kdn and the discriminant Dkd0,...,kdn are polynomials
with integer coefficients in a system of variables wk = (w(k,0), . . . , w(k,n)), where

(14) w(k,j) =
(
wk,j,ν : ν ∈ Nn+1, |ν| = kdj

)
,

is a system of indeterminate coefficients of the polynomial

Fk,j(w(k,j), x) =
∑

ν∈Nn+1

|ν|=kdj

wk,j,νx
ν , j = 0, . . . , n.

In fact w(k,j) is a system of

(15) Nkdj :=

(
kdj + n

n

)
variables. From Fact 3.2 we have that Reskd0,...,kdn is homogeneous in any system
of variables w(k,j) of degree

ek,j = knd0 · · · dj−1dj+1 · · · dn, j = 0, . . . , n.

The polynomial Dkd0,...,kdn is also homogeneous in any system of variables w(k,j).
Let sk,j be the degree of Dkd0,...,kdn with respect to w(k,j), j = 0, . . . , n. Obviously

(16) sk,0 + · · ·+ sk,n =

(
k(d0 + · · ·+ dn)

n

)
.
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Let

Ik = {η = (η(0), . . . , η(n)) ∈ NNkd0 × . . .× NNkdn : |η(j)| = sk,j

for j = 0, . . . , n}.

Then Dkd0,...,kdn one can write

(17) Dkd0,...,kdn =
∑
η∈Ik

CηJη,

where Cη ∈ Z for η ∈ Ik and

(18) Jη = wη
(0)

(k,0) · · ·w
η(n)

(k,n) for η = (η(0), . . . , η(n)) ∈ Ik.

Since

fkj =
∑

ν∈Nn+1

|ν|=kdj

xν
∑

ν1,...,νk∈Nn+1

ν1+···+νk=ν

|ν1|=···=|νk|=dj

uj,ν1 · · ·uj,νk , j = 0, . . . , n,

then we may define a mapping

Wk = (W(k,0), . . . ,W(k,n)) : CNd0 × · · · × CNdn → CNkd0 × · · · × CNkdn ,

by W(k,j) = (Wk,j,ν : ν ∈ Nn+1, |ν| = kdj) for j = 0, . . . , n, and

Wk,j,ν(u(j)) =
∑

ν1,...,νk∈Nn+1

ν1+···+νk=ν

|ν1|=···=|νk|=dj

uj,ν1 · · ·uj,νk for ν ∈ Nn+1, |ν| = kdj .

In other words, W(k,j) is a system of coefficients of fkj as a polynomial in x. So for
any positive integer k we may define

Rk = Reskd0,...,kdn(fk0 , . . . , f
k
n),

Dk = Dkd0,...,kdn(fk0 , . . . , f
k
n).

More precisely,

Rk = Reskd0,...,kdn ◦Wk ,

Dk = Dkd0,...,kdn ◦Wk .

Then from (17) and (18) we have

(19) Dk =
∑

η=(η(0),...,η(n))∈Ik

CηW
η(0)

(k,0) · · ·W
η(n)

(k,n).

From Fact 3.4 we have

Fact 3.7. For any positive integer k we have Dk 6= 0.

From [2, Proposition 1.3 in Chapter 13] and [1, Theorem 3.2], we immediately
obtain
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Fact 3.8. For any positive integer k we have

Reskd0,...,kdn(fk0 , . . . , f
k
n) = Resd0,...,dn(f0, . . . , fn)

kn+1

.

Recall that d∗ = max{d0, . . . , dn}. Put

N∗,k =

(
kd∗ + n

n

)
, N∗k =

(
(n+ 1)kd∗

n

)
, k ∈ Z, k > 0.

Lemma 3.9. L1(Dk) 6 (N∗,1)
kN∗

k L1(Dkd0,...,kdn).

Proof. Indeed, for any j = 0, . . . , n and any ν ∈ Nn+1, |ν| = kdj the polynomial

Wk,j,ν consists of at most (N∗,1)
k

monomials with coefficients equal to 1, i.e.,

(N∗,1)
k

is not smaller that

#{(ν1, . . . , νk) ∈
(
Nn+1

)k
: ν1 + · · ·+ νk = ν, |ν1| = · · · = |νk| = dj}

for j = 0, . . . , n. So from (19) we easily see that

L1(Dk) 6
∑

η=(η(0),...,η(n))∈Ik

|Cη| (N∗,1)
k|η(0)| · · · (N∗,1)

k|η(n)|
.

Then (16) easily gives the assertion. �

3.3. Height of a multipolynomial resultant. From Lemmas 2.2, 3.6 and 3.9
and Fact 3.8 we have

Lemma 3.10. For any k ∈ Z, k > 0 we have

M(Resd0,...,dn) 6 (N∗,1)
N∗
k/k

n

(N∗,k)
N∗
k/k

n+1

,(20)

H(Resd0,...,dn) 6 (N∗,1)
(n+1)dn∗−n−1

M(Resd0,...,dn),(21)

L1(Resd0,...,dn) 6 (N∗,1)
(n+1)dn∗ M(Resd0,...,dn).(22)

Proof. Let ej = d0 · · · dj−1dj+1 · · · dn for j = 0, . . . , n. By Lemma 2.2 and (6) we
obtain

H(Resd0,...,dn) 6

 n∏
j=0

(
Ndj

)ej−1

M(Resk
n+1

d0,...,dn)1/kn+1

,

L1(Resd0,...,dn) 6

 n∏
j=0

(
Ndj

)ejM(Resk
n+1

d0,...,dn)1/kn+1

.

Since e0 + · · ·+ en 6 (n+ 1)dn∗ , then from the above we have

H(Resd0,...,dn) 6 (N∗,1)
(n+1)dn∗−n−1

M(Resk
n+1

d0,...,dn)1/kn+1

,

L1(Resd0,...,dn) 6 (N∗,1)
(n+1)dn∗ M(Resk

n+1

d0,...,dn)1/kn+1

.

This, together with Fact 3.8, gives (21) and (22).
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From Fact 3.8 we also have M(Resk
n+1

d0,...,dn)1/kn+1

= M(Rk)1/kn+1

, and since
M(Rk) 6M(Dk) (by (7) and Facts 3.5 and 3.7), so (9) gives

(23) M(Resk
n+1

d0,...,dn)1/kn+1

6 L2(Dk)1/kn+1

.

By Lemma 3.9 we have

(24) L1(Dk) 6 (N∗,1)
kN∗

k L1(Dkd0,...,kdn).

Since

Nkdj 6 N∗,k, for j = 0, . . . , n,

Nkd0,...,kdn 6 N
∗
k ,

so, from Lemma 3.6 we obtain

L1(Dkd0,...,kdn) 6 (N∗,k)
N∗
k for k > 0.

Since L2(Dk) 6 L1(Dk) then (23) and (24) gives (20). �

In general N∗k 6 (n + 1)!(kd∗)
n. It turns out that asymptotically this number

has better properties.

Lemma 3.11.

lim
k→∞

N∗k
kn

=
(n+ 1)ndn∗

n!
<

en+1

√
2πn

dn∗ .

Proof. Indeed,

N∗k
kn

=

∏n
j=1[(n+ 1)kd∗ − n+ j]

n!kn
,

so,

lim
k→∞

N∗k
kn

=
(n+ 1)ndn∗

n!
=

(
n+ 1

n

)n
nn

n!
dn∗ < e

nn

n!
dn∗ .

Since from Stirling formula,

nn

n!
6
en−1/(12n+1)

√
2πn

,

then we obtain the assertion. �

Lemmas 3.10 and 3.11 gives the main result of this paper.

Theorem 3.12. Let d∗ = max{d0, . . . , dn} and Kn = en+1/
√

2πn,
n > 0. Then

M(Resd0,...,dn) 6 (d∗ + 1)nKnd
n
∗ ,(25)

H(Resd0,...,dn) 6 (d∗ + 1)n(Kn+n+1)dn∗−n(n+1),(26)

L1(Resd0,...,dn) 6 (d∗ + 1)n(Kn+n+1)dn∗ .(27)
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Moreover, if n > 2 and d∗ > 4, then

M(Resd0,...,dn) 6 (d∗)
nKnd

n
∗ ,

H(Resd0,...,dn) 6 (d∗)
n(Kn+n+1)dn∗−n(n+1),

L1(Resd0,...,dn) 6 (d∗)
n(Kn+n+1)dn∗ .

(28)

Proof. From Lemma 3.10 for nay k ∈ Z, k > 0 we have

M(Resd0,...,dn) 6 (N∗,1)
N∗
k/k

n

(N∗,k)
N∗
k/k

n+1

,

H(Resd0,...,dn) 6 (N∗,1)
(n+1)dn∗−n−1

(N∗,1)
N∗
k/k

n

(N∗,k)
N∗
k/k

n+1

,

L1(Resd0,...,dn) 6 (N∗,1)
(n+1)dn∗ (N∗,1)

N∗
k/k

n

(N∗,k)
N∗
k/k

n+1

.

Since 1 6 N∗,k 6 (kd∗ + 1)n, then

(29) lim
k→∞

(N∗,k)
1/k

= 1,

so passing to the limit as k → ∞ in the above inequalities, by Lemma 3.11, we
obtain (25), (26) and (27).

Since for n > 2 and d∗ > 4 we have N∗,1 6 dn∗ then we obtain the second part
of the assertion (28). �

Remark 3.13. The estimation (27) of L1(Resd0,...,dn) is not a direct consequence
of the estimation (26) of the height H(Resd0,...,dn) because the number of coefficients

of Resd0,...,dn can be bigger than (d∗ + 1)n(n+1). The number of coefficients of the
resultant can be estimated by

Ed0,...,dn :=
n∏
j=0

((dj+n
n

)
+ d0 · · · dj−1dj+1 · · · dn

d0 · · · dj−1dj+1 · · · dn

)
6 (d∗ + 1)n(n+1)dn∗ .

4. Gelfond-Mahler type inequalities for homogeneous polynomials

As a corollaries from Lemma 2.2 we obtain the following Gelfond-Mahler type
theorems.

Corollary 4.1. Let f ∈ Z[u(m,0), . . . , u(m,n)] be a nonzero polynomial such that f
is homogeneous of degree sj > 0 as a polynomial in each system of variables u(m,j).
Then for any polynomials f1, . . . , fk ∈ Z[u(m,0), . . . , u(m,n)] such that f = f1 · · · fk
we have

(30) H(f1) · · ·H(fk) 6

 n∏
j=0

N
sj−1
m,dj

M(f)

6

 n∏
j=0

N
sj−1
m,dj

 n∏
j=0

√
Nm,dj + 1

sj

H(f)
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and

(31) L1(f1) · · ·L1(fk) 6

 n∏
j=0

N
sj
m,dj

M(f) 6

 n∏
j=0

N
sj
m,dj

L1(f).

Proof. The left hand inequalities in (30) and (31) immediately follows from Lemma
2.2, because M(f1) · · ·M(fk) = M(f) from (6). Since the polynomial f is homo-
geneous with respoct to u(m,j) of degree sj , j = 0, . . . , n, then from (9) we have

M(f) 6

 n∏
j=0

√(
sj +Nm,dj
Nm,dj

)H(f) 6

 n∏
j=0

√
Nm,dj + 1

sj

H(f).

This gives the right hand inequalities in (30) and (31) and ends the proof. �

Applying Corollary 4.1 for n = 0, d0 = 1 and m = N − 1 and a homogenisation

f∗(x0, . . . , xm) := xdeg f
0 f(x1/x0. . . . , xm/x0) of a polynomial f ∈ Z[x1, . . . , xm] we

obtain the following corollary.

Corollary 4.2. Let f ∈ Z[x1, . . . , xm] be a nonzero polynomial of degree s > 0.
Then for any polynomials f1, . . . , fk ∈ Z[x1, . . . , xm] such that f = f1 · · · fk we
have

H(f1) · · ·H(fk) 6 (N + 1)s−1M(f∗) 6 (N + 1)s−1
√
N + 2

s
H(f)

and

L1(f1) · · ·L1(fk) 6 (N + 1)sM(f∗) 6 (N + 1)sL1(f).
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E-mail address: agjaskorzynska@math.uni.lodz.pl

(Krzysztof Kurdyka) Laboratoire de Mathematiques (LAMA) Universié Savoie Mont
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