dc.contributor.author | Szewczyk, Rafał | |
dc.contributor.author | Soboń, Adrian | |
dc.contributor.author | Słaba, Mirosława | |
dc.contributor.author | Długoński, Jerzy | |
dc.date.accessioned | 2015-06-15T10:19:40Z | |
dc.date.available | 2015-06-15T10:19:40Z | |
dc.date.issued | 2015-03-03 | |
dc.identifier.issn | 1873-3336 | |
dc.identifier.uri | http://hdl.handle.net/11089/9735 | |
dc.description.abstract | Alachlor is an herbicide that is widely used worldwide to protect plant crops against broadleaf weedsand annual grasses. However, due to its endocrine-disrupting activity, its application had been bannedin the European Union. As described in our earlier work, Paecilomyces marquandii is a microscopic funguscapable of alachlor removal by N-acetyl oxidation. Our current work uses proteomics and metabolomicsto gain a better understanding of alachlor biodegradation by the microscopic fungus P. marquandii.The data revealed that the addition of alachlor reduced the culture growth and glucose consump-tion rates. Moreover, the rates of glycolysis and the tricarboxylic acids (TCA) cycle increased duringthe initial stage of growth, and there was a shift toward the formation of supplementary materials(UDP-glucose/galactose) and reactive oxygen species (ROS) scavengers (ascorbate). Proteomic analy-sis revealed that the presence of xenobiotics resulted in a strong upregulation of enzymes related toenergy, sugar metabolism and ROS production. However, the unique overexpression of cyanide hydratasein alachlor-containing cultures may implicate this enzyme as the key protein involved in the alachlorbiodegradation pathway. The characterization of P. marquandii-mediated alachlor removal in terms of cellstructure and function provides a deeper insight into the strategies of microorganisms toward xenobioticbiodegradation. | pl_PL |
dc.description.sponsorship | This study was supported by the grant of the National Science Centre, Poland (Project No. UMO-2011/01/B/NZ9/02898). | |
dc.language.iso | en | pl_PL |
dc.publisher | Elsevier Science Limited | pl_PL |
dc.relation.ispartofseries | Journal of Hazardous Materials;Volume 291, 30 June 2015 | |
dc.rights | Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska | * |
dc.rights | Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/pl/ | * |
dc.subject | fungi | pl_PL |
dc.subject | alachlor | pl_PL |
dc.subject | biodegradation | pl_PL |
dc.subject | metabolomics | pl_PL |
dc.subject | proteomics | pl_PL |
dc.subject | lc-ms/ms | pl_PL |
dc.title | Mechanism study of alachlor biodegradation by Paecilomycesmarquandii with proteomic and metabolomic methods | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 52-64 | pl_PL |
dc.contributor.authorAffiliation | Faculty of Biology and Environmental Protection, University of Łodz, | pl_PL |
dc.references | P. Böger, B. Matthes, J. Schmalfuß, Towards the primary target of chloroacetamides – new findings pave the way, Pest. Man. Sci. 56 (2000) 497-508. | |
dc.references | L.D. Sette, L.A. Mendonca Alves da Costa, A.J. Marsaioli, G.P. Manfio, Biodegradation of alachlor by streptomycetes, Appl. Microbiol. Biotechnol. 64 (2004) 712–717. | |
dc.references | L. Fava, P. Bottoni, A. Crobe, E. Funari, Leaching properties of some degradation products of alachlor and metolachlor, Chemosphere 41 (2000) 1503-1508. | |
dc.references | D.M. Tessier, J.M. Clark, Quantitative assessment of the mutagenic potential of environmental degradative products of alachlor, J. Agric. Food Chem. 43 (1995) 2504-2512. | |
dc.references | C.Z. Chen, C.T. Yan, P.V. Kumar, J.W. Huang, J.F. Jen, Determination of alachlorand its metabolite 2,6-diethylaniline in microbial culture medium using online microdialysis enriched sampling coupled to high performance liquid chromatography,J. Agric. Food Chem. 59 (2011) 8078–8085. | |
dc.references | W. Charles, D. Knappa, W. Grahama, G. Berardescoa, F. de Noyelles Jr, B.J. Cutakd, C.K. Larive, Nutrient level, microbial activity, and alachlor transformation inaerobic aquatic systems, Water Res. 37(2003) 4761–4769. | |
dc.references | A.E.M. Chirnside, W.F. Ritter, M. Radosevich, Biodegradation of aged residuesof atrazine and alachlor in a mix-load site soil. Soil Biol.Biochem. 41 (2009) 2484–2492. | |
dc.references | Munoz, W.C. Koskinen, L. Cox, M.J. Sadowsky, Biodegradation and mineralization of metolachlor and alachlor by Candida xestobii, J. Agric. Food Chem. 59 (2011) 619-627. | |
dc.references | J.-S. Seo, Y.-S. Keum, Q.X. Li, Metabolomic and proteomic insights into carbaryl catabolism by Burkholderia sp. C3 and degradation of ten N-methylcarbamates, Biodegradation 24 (2013) 795-811. | |
dc.references | Y.S. Keum, J.S. Seo, Q.X. Li, J.H. Kim, Comparative metabolomic analysis of Sinorhizobium sp. C4 during the degradation of phenanthrene, Appl. Microbiol. Biotechnol. 80 (2008) 863–872. | |
dc.references | R. Szewczyk, A. Soboń, S. Różalska, K. Dzitko, D. Waidelich, J. Długoński, Intracellular proteome expression during 4-n-nonylphenol biodegradation by the filamentous fungus Metarhizium robertsii, Int. Biodeterior. Biodegrad. 93 (2014) 44–53. | |
dc.references | M.B. Carvalho, I. Martins, J. Medeiros, S. Tavares, S. Planchon, J. Renaut, O. Núñez, H. Gallart-Ayala, M.T. Galceran, A. Hursthouse, C. Silva Pereira, The response of Mucor plumbeus to pentachlorophenol: a toxicoproteomics study, J. Proteomics 78 (2013) 159–171. | |
dc.references | F. Matsuzaki, M. Shimizu, H. Wariishi, 2008. Proteomic and metabolomic analyses of the White-Rot fungus Phanerochaete chrysosporium exposed to exogenous benzoic acid, J. Proteome Res. 7 (2008) 2342-2350. | |
dc.references | X. Zhang, X. Liu, W. Chai, J. Wei, Q. Wang, B. Li, H. Li, The use of proteomic analysis for exploring the phytoremediation mechanism of Scirpus triqueter to pyrene, J. Hazard. Mater. 260 (2013) 1001–1007. | |
dc.references | C. Agrawal, S. Sen, S. Singh, S. Rai, P.K. Singh, V.K. Singh, L.C. Rai, Comparative proteomics reveals association of early accumulated proteins in conferring butachlor tolerance in three N2-fixing Anabaena sp., J. Proteomics 96 (2014) 271-290. | |
dc.references | M. Słaba, R. Szewczyk, M.A. Piątek, J. Długoński, Alachlor oxidation by the filamentous fungus Paecilomyces marquandii, J. Hazard. Mater. 261 (2013) 443–450. | |
dc.references | M. Słaba, J. Długoński, Selective recovery of Zn2+ from waste slag from a metal-processing plant by microscopic fungus Verticillium marquandii, Biotechnol. Lett. 22 (2000) 1699–1704. | |
dc.references | R. Wei, G. Li, A.B. Seymour, High-throughput and multiplexed LC/MS/MRM method for targeted metabolomics, Anal. Chem. 82 (2010) 5527–5533. | |
dc.references | S. Różalska, R. Szewczyk, J. Długoński, Biodegradation of 4-n-nonylphenol by the non-ligninolytic filamentous fungus Gliocephalotrichum simplex: a proposalof a metabolic pathway, J. Hazard. Mater. 180 (2010) 323–331. | |
dc.references | D.N. Perkins, D.J. Pappin, D.M. Creasy, J.S. Cottrell, Probability-based protein identification by searching sequence databases using mass spectrometry data, Electrophoresis 20 (1999) 3551–3567. | |
dc.references | S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman, Basic local alignment search tool, J. Mol. Biol. 215 (1990) 403–410. | |
dc.references | Basic Local Alignment Search Tool, The National Center for Biotechnology Information, 2014 online at: http://blast.st-va.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome | |
dc.references | D. Miura, H. Tanaka, H. Wariishi, Metabolomic differential display analysis of the white-rot basidiomycete Phanerochaete chrysosporium grown under air and 100% oxygen, FEMS Microbiol. Let. 234 (2004) 111–116. | |
dc.references | M. Ringnér, What is principal component analysis?, Nat. Biotechnol. 26 (2008) 303–304. | |
dc.references | S.S. Doyle, Fungal proteomics: from identification to function. FEMS Microbiol. Lett. 321 (2011) 1–9. | |
dc.references | O. Bregar, S. Mandelc, F. Celar, B. Javornik, Proteome analysis of the plant pathogenic fungus Monilinia laxa showing host specificity, Food Technol. Biotechnol. 50 (2012) 326–333. | |
dc.references | D. Salvachúa, A.T. Martínez, M. Tien, M.F. López-Lucendo, F. García, V. de Los Ríos, M.J. Martínez, A. Prieto, Differential proteomic analysis of the secretome of Irpex lacteus and other white-rot fungi during wheat straw pretreatment, Biotechnol. Biofuels 6 (2013) 115. | |
dc.references | K. Kroll, V. Pähtz, O. Kniemeyer, Elucidating the fungal stress response by proteomics, J. Proteomics 97 (2014) 151–163. | |
dc.references | K. Kroll, V. Pähtz, O. Kniemeyer, Elucidating the fungal stress response by proteomics, J. Proteomics 97 (2014) 151–163. | |
dc.references | J.M.P.F. Ferreira de Oliveira, L.H. de Graaff, Proteomics of industrial fungi: trends and insights for biotechnology, Appl. Microbiol. Biotechnol. 89 (2011) 225–237. | |
dc.references | X. Yang, J.-Y. Sun, J.-L. Guob, X.-Y. Weng, Identification and proteomic analysis of a novel gossypol-degrading fungal strain, J. Sci. Food Agric. 92 (2012) 943–951. | |
dc.references | J. Fujii, Y. Ikeda, Advances in our understanding of peroxiredoxin, a multifunctional, mammalian redox protein, Redox Rep. 7 (2002) 123–130. | |
dc.identifier.doi | 10.1016/j.jhazmat.2015.02.063 | |