Show simple item record

dc.contributor.authorSzewczyk, Rafał
dc.contributor.authorSoboń, Adrian
dc.contributor.authorSłaba, Mirosława
dc.contributor.authorDługoński, Jerzy
dc.date.accessioned2015-06-15T10:19:40Z
dc.date.available2015-06-15T10:19:40Z
dc.date.issued2015-03-03
dc.identifier.issn1873-3336
dc.identifier.urihttp://hdl.handle.net/11089/9735
dc.description.abstractAlachlor is an herbicide that is widely used worldwide to protect plant crops against broadleaf weedsand annual grasses. However, due to its endocrine-disrupting activity, its application had been bannedin the European Union. As described in our earlier work, Paecilomyces marquandii is a microscopic funguscapable of alachlor removal by N-acetyl oxidation. Our current work uses proteomics and metabolomicsto gain a better understanding of alachlor biodegradation by the microscopic fungus P. marquandii.The data revealed that the addition of alachlor reduced the culture growth and glucose consump-tion rates. Moreover, the rates of glycolysis and the tricarboxylic acids (TCA) cycle increased duringthe initial stage of growth, and there was a shift toward the formation of supplementary materials(UDP-glucose/galactose) and reactive oxygen species (ROS) scavengers (ascorbate). Proteomic analy-sis revealed that the presence of xenobiotics resulted in a strong upregulation of enzymes related toenergy, sugar metabolism and ROS production. However, the unique overexpression of cyanide hydratasein alachlor-containing cultures may implicate this enzyme as the key protein involved in the alachlorbiodegradation pathway. The characterization of P. marquandii-mediated alachlor removal in terms of cellstructure and function provides a deeper insight into the strategies of microorganisms toward xenobioticbiodegradation.pl_PL
dc.description.sponsorshipThis study was supported by the grant of the National Science Centre, Poland (Project No. UMO-2011/01/B/NZ9/02898).
dc.language.isoenpl_PL
dc.publisherElsevier Science Limitedpl_PL
dc.relation.ispartofseriesJournal of Hazardous Materials;Volume 291, 30 June 2015
dc.rightsUznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska*
dc.rightsUznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/pl/*
dc.subjectfungipl_PL
dc.subjectalachlorpl_PL
dc.subjectbiodegradationpl_PL
dc.subjectmetabolomicspl_PL
dc.subjectproteomicspl_PL
dc.subjectlc-ms/mspl_PL
dc.titleMechanism study of alachlor biodegradation by Paecilomycesmarquandii with proteomic and metabolomic methodspl_PL
dc.typeArticlepl_PL
dc.page.number52-64pl_PL
dc.contributor.authorAffiliationFaculty of Biology and Environmental Protection, University of Łodz,pl_PL
dc.referencesP. Böger, B. Matthes, J. Schmalfuß, Towards the primary target of chloroacetamides – new findings pave the way, Pest. Man. Sci. 56 (2000) 497-508.
dc.referencesL.D. Sette, L.A. Mendonca Alves da Costa, A.J. Marsaioli, G.P. Manfio, Biodegradation of alachlor by streptomycetes, Appl. Microbiol. Biotechnol. 64 (2004) 712–717.
dc.referencesL. Fava, P. Bottoni, A. Crobe, E. Funari, Leaching properties of some degradation products of alachlor and metolachlor, Chemosphere 41 (2000) 1503-1508.
dc.referencesD.M. Tessier, J.M. Clark, Quantitative assessment of the mutagenic potential of environmental degradative products of alachlor, J. Agric. Food Chem. 43 (1995) 2504-2512.
dc.referencesC.Z. Chen, C.T. Yan, P.V. Kumar, J.W. Huang, J.F. Jen, Determination of alachlorand its metabolite 2,6-diethylaniline in microbial culture medium using online microdialysis enriched sampling coupled to high performance liquid chromatography,J. Agric. Food Chem. 59 (2011) 8078–8085.
dc.referencesW. Charles, D. Knappa, W. Grahama, G. Berardescoa, F. de Noyelles Jr, B.J. Cutakd, C.K. Larive, Nutrient level, microbial activity, and alachlor transformation inaerobic aquatic systems, Water Res. 37(2003) 4761–4769.
dc.referencesA.E.M. Chirnside, W.F. Ritter, M. Radosevich, Biodegradation of aged residuesof atrazine and alachlor in a mix-load site soil. Soil Biol.Biochem. 41 (2009) 2484–2492.
dc.referencesMunoz, W.C. Koskinen, L. Cox, M.J. Sadowsky, Biodegradation and mineralization of metolachlor and alachlor by Candida xestobii, J. Agric. Food Chem. 59 (2011) 619-627.
dc.referencesJ.-S. Seo, Y.-S. Keum, Q.X. Li, Metabolomic and proteomic insights into carbaryl catabolism by Burkholderia sp. C3 and degradation of ten N-methylcarbamates, Biodegradation 24 (2013) 795-811.
dc.referencesY.S. Keum, J.S. Seo, Q.X. Li, J.H. Kim, Comparative metabolomic analysis of Sinorhizobium sp. C4 during the degradation of phenanthrene, Appl. Microbiol. Biotechnol. 80 (2008) 863–872.
dc.referencesR. Szewczyk, A. Soboń, S. Różalska, K. Dzitko, D. Waidelich, J. Długoński, Intracellular proteome expression during 4-n-nonylphenol biodegradation by the filamentous fungus Metarhizium robertsii, Int. Biodeterior. Biodegrad. 93 (2014) 44–53.
dc.referencesM.B. Carvalho, I. Martins, J. Medeiros, S. Tavares, S. Planchon, J. Renaut, O. Núñez, H. Gallart-Ayala, M.T. Galceran, A. Hursthouse, C. Silva Pereira, The response of Mucor plumbeus to pentachlorophenol: a toxicoproteomics study, J. Proteomics 78 (2013) 159–171.
dc.referencesF. Matsuzaki, M. Shimizu, H. Wariishi, 2008. Proteomic and metabolomic analyses of the White-Rot fungus Phanerochaete chrysosporium exposed to exogenous benzoic acid, J. Proteome Res. 7 (2008) 2342-2350.
dc.referencesX. Zhang, X. Liu, W. Chai, J. Wei, Q. Wang, B. Li, H. Li, The use of proteomic analysis for exploring the phytoremediation mechanism of Scirpus triqueter to pyrene, J. Hazard. Mater. 260 (2013) 1001–1007.
dc.referencesC. Agrawal, S. Sen, S. Singh, S. Rai, P.K. Singh, V.K. Singh, L.C. Rai, Comparative proteomics reveals association of early accumulated proteins in conferring butachlor tolerance in three N2-fixing Anabaena sp., J. Proteomics 96 (2014) 271-290.
dc.referencesM. Słaba, R. Szewczyk, M.A. Piątek, J. Długoński, Alachlor oxidation by the filamentous fungus Paecilomyces marquandii, J. Hazard. Mater. 261 (2013) 443–450.
dc.referencesM. Słaba, J. Długoński, Selective recovery of Zn2+ from waste slag from a metal-processing plant by microscopic fungus Verticillium marquandii, Biotechnol. Lett. 22 (2000) 1699–1704.
dc.referencesR. Wei, G. Li, A.B. Seymour, High-throughput and multiplexed LC/MS/MRM method for targeted metabolomics, Anal. Chem. 82 (2010) 5527–5533.
dc.referencesS. Różalska, R. Szewczyk, J. Długoński, Biodegradation of 4-n-nonylphenol by the non-ligninolytic filamentous fungus Gliocephalotrichum simplex: a proposalof a metabolic pathway, J. Hazard. Mater. 180 (2010) 323–331.
dc.referencesD.N. Perkins, D.J. Pappin, D.M. Creasy, J.S. Cottrell, Probability-based protein identification by searching sequence databases using mass spectrometry data, Electrophoresis 20 (1999) 3551–3567.
dc.referencesS.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman, Basic local alignment search tool, J. Mol. Biol. 215 (1990) 403–410.
dc.referencesBasic Local Alignment Search Tool, The National Center for Biotechnology Information, 2014 online at: http://blast.st-va.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
dc.referencesD. Miura, H. Tanaka, H. Wariishi, Metabolomic differential display analysis of the white-rot basidiomycete Phanerochaete chrysosporium grown under air and 100% oxygen, FEMS Microbiol. Let. 234 (2004) 111–116.
dc.referencesM. Ringnér, What is principal component analysis?, Nat. Biotechnol. 26 (2008) 303–304.
dc.referencesS.S. Doyle, Fungal proteomics: from identification to function. FEMS Microbiol. Lett. 321 (2011) 1–9.
dc.referencesO. Bregar, S. Mandelc, F. Celar, B. Javornik, Proteome analysis of the plant pathogenic fungus Monilinia laxa showing host specificity, Food Technol. Biotechnol. 50 (2012) 326–333.
dc.referencesD. Salvachúa, A.T. Martínez, M. Tien, M.F. López-Lucendo, F. García, V. de Los Ríos, M.J. Martínez, A. Prieto, Differential proteomic analysis of the secretome of Irpex lacteus and other white-rot fungi during wheat straw pretreatment, Biotechnol. Biofuels 6 (2013) 115.
dc.referencesK. Kroll, V. Pähtz, O. Kniemeyer, Elucidating the fungal stress response by proteomics, J. Proteomics 97 (2014) 151–163.
dc.referencesK. Kroll, V. Pähtz, O. Kniemeyer, Elucidating the fungal stress response by proteomics, J. Proteomics 97 (2014) 151–163.
dc.referencesJ.M.P.F. Ferreira de Oliveira, L.H. de Graaff, Proteomics of industrial fungi: trends and insights for biotechnology, Appl. Microbiol. Biotechnol. 89 (2011) 225–237.
dc.referencesX. Yang, J.-Y. Sun, J.-L. Guob, X.-Y. Weng, Identification and proteomic analysis of a novel gossypol-degrading fungal strain, J. Sci. Food Agric. 92 (2012) 943–951.
dc.referencesJ. Fujii, Y. Ikeda, Advances in our understanding of peroxiredoxin, a multifunctional, mammalian redox protein, Redox Rep. 7 (2002) 123–130.
dc.identifier.doi10.1016/j.jhazmat.2015.02.063


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska
Except where otherwise noted, this item's license is described as Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska