dc.contributor.author | Lewandowska, Żaneta | |
dc.contributor.author | Piszczek, Piotr | |
dc.contributor.author | Radtke, Aleksandra | |
dc.contributor.author | Jędrzejewski, Tomasz | |
dc.contributor.author | Kozak, Wiesław | |
dc.contributor.author | Sadowska, Beata | |
dc.date.accessioned | 2015-05-11T12:19:28Z | |
dc.date.available | 2015-05-11T12:19:28Z | |
dc.date.issued | 2015-03-20 | |
dc.identifier.issn | 1573-4838 | |
dc.identifier.uri | http://hdl.handle.net/11089/8716 | |
dc.description.abstract | The highly ordered titanium dioxide nanotube
coatings were produced under various electrochemical
conditions on the surface of titanium foil. The anodization
voltage changes proved to be a main factor which directly
affects the nanotube morphology, structure, and wettability.
Moreover we have noticed a significant dependence between
the size and crystallinity of TiO2 layers and the adhesion/
proliferation of fibroblasts and antimicrobial properties.
Cellular functionality were investigated for up to 3 days in
culture using a cell viability assay and scanning electron
microscopy. In general, results of our studies revealed that
fibroblasts adhesion, proliferation, and differentiation on the
titania nanotube coatings is clearly higher than on the surface
of the pure titanium foil. The formation of crystallic islands
in the nanotubes structure induced a significant acceleration
in the growth rate of fibroblasts cells by as much as *200 %.
Additionally, some types of TiO2 layers revealed the ability
to the reduce of the staphylococcal aggregates/biofilm formation.
The nanotube coatings formed during the anodization
process using the voltage 4 V proved to be the stronger
S. aureus aggregates/biofilm inhibitor in comparison to the
uncovered titanium substrate. That accelerated eukaryotic
cell growth and anti-biofilm activity is believed to be advantageous for faster cure of dental and orthopaedic patients,
and also for a variety of biomedical diagnostic and
therapeutic applications.
Graphical Abstract The highly ordered titanium dioxide
nanotube coatings were produced under various electrochemical
conditions on the surface of titanium foil. The
anodization voltage changes proved to be a main factor
which directly affects the nanotube morphology, structure,
and wettability. Moreover we have noticed a significant
dependence between the size and crystallinity of TiO2
layers and the adhesion/proliferation of fibroblasts and
antimicrobial properties. | pl_PL |
dc.description.sponsorship | COST
Action MP 1005 Namabio for the financial support of Short Term
Scientific Missions (STSMs) in Tribology Centre, Danish Technological
Institute | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Springer | pl_PL |
dc.relation.ispartofseries | Journal of Materials Science: Materials in Medicine;(2015) 26:163 | |
dc.rights | Uznanie autorstwa 3.0 Polska | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/pl/ | * |
dc.title | The evaluation of the impact of titania nanotube covers morphology and crystal phase on their biological properties | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 1-12 | pl_PL |
dc.contributor.authorAffiliation | Lewandowska Żaneta, Nicolaus Copernicus University, Department of Inorganic and Coordination Chemistry, Faculty of Chemistry | pl_PL |
dc.contributor.authorAffiliation | Piszczek Piotr, Nicolaus Copernicus University, Department of Inorganic and Coordination Chemistry, Faculty of Chemistry | pl_PL |
dc.contributor.authorAffiliation | Radtke Aleksandra, Nicolaus Copernicus University, Department of Inorganic and Coordination Chemistry, Faculty of Chemistry | pl_PL |
dc.contributor.authorAffiliation | Jędrzejewski Tomasz, Department of Immunology, Faculty of Biology and Environment Protection | pl_PL |
dc.contributor.authorAffiliation | Kozak Wiesław, Department of Immunology, Faculty of Biology and Environment Protection | pl_PL |
dc.contributor.authorAffiliation | Sadowska Beata, University of Lodz Department of Infectious Biology, Faculty of Biology and Environmental Protection | pl_PL |
dc.references | Bauer S, Schmuki S, Von Der Mark K, Park J. Engineering biocompatible implant surfaces: Part I: Materials and surfaces. Prog Mater Sci. 2013;58:261–326. | pl_PL |
dc.references | Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog Mater Sci. 2009;54:397–425. | pl_PL |
dc.references | Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng. 2004;47:49–121. | pl_PL |
dc.references | Das K, Bose S, Bandyopadhyay A. Surface modifications and cell-materials interactions with anodized Ti. Acta Biomater. 2007;3:573–85. | pl_PL |
dc.references | Yang W-E, Hsu M-L, Lin M-C, Chen Z-H, Chen L-H, Huang H-H. Nano/submicron-scale TiO2 network on titanium surface for dental implant application. J Alloy Compd. 2009;479:642–7. | pl_PL |
dc.references | Von Der Mark K, Park J. Engineering biocompatible implant surfaces. Part II: cellular recognition of biomaterial surfaces: lessons from cell–matrix interactions. Prog Mater Sci. 2013;58:327–81. | pl_PL |
dc.references | Eisenbarth E, Velten D, Schenk-Meuser K, Linez P, Biehl V, Duschner H, et al. Interactions between cells and titanium surfaces. Biomol Eng. 2002;19:243–9. | pl_PL |
dc.references | Liu HY, Wang XJ, Wang LP, Lei FY, Wang XF, Ai HJ. Effect of fluoride-ion implantation on the biocompatibility of titanium for dental applications. Appl Surf Sci. 2008;254:6305–12. | pl_PL |
dc.references | Tan AW, Pingguan-Murphy B, Ahmad R, Akbar SA. Review of titania nanotubes: fabrication and cellular response. Ceram Int. 2012;38:4421–35. | pl_PL |
dc.references | Moseke C, Hage F, Vorndran E, Gbureck U. TiO2 nanotube arrays deposited on Ti substrate by anodic oxidation and their potential as a long-term drug delivery system for antimicrobial agents. Appl Surf Sci. 2012;258:5399–404. | pl_PL |
dc.references | Zhao L, Wang H, Huo K, Zhang X, Wang W, Zhang Y, et al. The osteogenic activity of strontium loaded titania nanotube arrays on titanium substrates. Biomaterials. 2013;34:19–29. | pl_PL |
dc.references | Narayanan R, Kwon T-Y, Kim K-H. TiO2 nanotubes from stirred glycerol/NH4F electrolyte: roughness, wetting behavior and adhesion for implant applications. Mater Chem Phys. 2009;117:460–4 | pl_PL |
dc.references | Kowalski D, Kim D, Schmuki P. TiO2 nanotubes, nanochannels and mesosponge: self-organized formation and applications. Nano Today. 2013;8:235–64. | pl_PL |
dc.references | Brammer KS, Frandsen CJ, Jin S. TiO2 nanotubes for bone regeneration. Trends Biotechnol. 2012;30:315–22. | pl_PL |
dc.references | Zareidoost A, Yousefpour M, Ghaseme B, Amanzadeh A. The relationship of surface roughness and cell response of chemical surface modification of titanium. J Mater Sci Mater Med. 2012;23:1479–88. | pl_PL |
dc.references | Minagar S, Berndt CC, Wang J, Ivanova E, Wen C. A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomater. 2012;8:2875–88. | pl_PL |
dc.references | Smith BS, Yoriya S, Johnson T, Popat KC. Dermal fibroblast and epidermal keratinocyte functionality on titania nanotube arrays. Acta Biomater. 2011;7:2686–96. | pl_PL |
dc.references | Gittens RA, Olivares-Navarrete R, McLachlan T, Cai Y, Hyzy SL, Schneider JM, et al. Differential responses of osteoblast lineage cells to nanotopographically-modified, microroughened titanium-aluminum-vanadium alloy surfaces. Biomaterials. 2012; 33:8986–94. | pl_PL |
dc.references | Furuhashi A, Ayukawa Y, Atsuta I, Okawachi H, Koyano K. The difference of fibroblast behavior on titanium substrata with different surface characteristics. Odontology. 2012;100:199–205. | pl_PL |
dc.references | Velent D, Biehl V, Aubertin F, Valeske B, Possart W, Breme J. Preparation of TiO2 layers on cp-Ti and Ti6Al4V by thermal and anodic oxidation and by sol-gel coating techniques and their characterization. J Biomed Mat Res A. 2002;59:18–28. | pl_PL |
dc.references | Si HY, Sun ZH, Kang X, Zi WW, Zhang HL. Voltage-dependent morphology, wettability and photocurrent response of anodic porous titanium dioxide films. Microporous Mesoporous Mater. 2009;119:75–81. | pl_PL |
dc.references | Li Y, Ma Q, Han J, Ji L, Wang J, Chen J, et al. Controllable preparation, growth mechanism and the properties research of TiO2 nanotube arrays. Appl Surf Sci. 2014;297:103–8. | pl_PL |
dc.references | Xie ZB, Blackwood DJ. Effects of anodization parameters on the formation of titania nanotubes in ethylene glycol. Electrochim Acta. 2010;56:905–12. | pl_PL |
dc.references | Yang B, Ng CK, Fung MK, Ling CC, Djurisˇic´ AB, Fung S. Annealing study of titanium oxide nanotube arrays. Mater Chem Phys. 2011;130:1227–31. | pl_PL |
dc.references | Fang D, Luo Z, Huang K, Lagoudas DC. Effect of heat treatment on morphology, crystalline structure and photocatalysis properties of TiO2 nanotubes on Ti substrate and freestanding membrane. Appl Surf Sci. 2011;257:6451–61. | pl_PL |
dc.references | Ou H-H, Lo S-L. Review of titania nanotubes synthesized via the hydrothermal treatment: fabrication, modification, and application. Sep Purif Technol. 2007;58:179–91. | pl_PL |
dc.references | Xiong J, Wang Y, Li Y, Hodgson D. Phase transformation and thermal structure stability of titania nanotube films with different morphologies. Thin Solid Films. 2012;526:116–9. | pl_PL |
dc.references | Kar A, Raja KS, Misra M. Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications. Surf CoatTechnol. 2006;201:3723–31. | pl_PL |
dc.references | Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, et al. TiO2 nanotubes: self-organized electrochemical formation, properties and applications. Curr Opin Solid State Mater Sci. 2007;11:3–18. | pl_PL |
dc.references | Zhao J, Wang X, Chen R, Li L. Fabrication of titanium oxide nanotube arrays by anodic oxidation. Solid State Commun. 2005;134:705–10. | pl_PL |
dc.references | Transferetti BC, Davanzo CU, Zoppi RA, da Cruz NC, de Moraes MAB. Berreman effect applied to phase characterization of thin films supported on metallic substrates: the case of TiO2. Phys Rev B. 2001;64:125404. | pl_PL |
dc.references | Mantzila AG, Prodromidis MI. Development and study of anodic Ti/TiO2 electrodes and their potential use as impedimetric immunosensors. Electrochim Acta. 2006;51:3537–42. | pl_PL |
dc.references | Bauer S, Park J, Von Der Mark K, Schmuki P. Improved attachment of mesenchymal stem cells on super hydrophobic TiO2 nanotubes. Acta Biomater. 2008;4:1576–82. | pl_PL |
dc.references | Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, et al. TiO2 nanotubes: self-organized electrochemical formation, properties and applications. Curr Opin Solid State Mater Sci. 2007;11:3–18. | pl_PL |
dc.references | Yu WQ, Jiang XQ, Zhang FQ, Xu L. The effect of anatase TiO2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation. J Biomed Mater Res A. 2010;94:1012–22. | pl_PL |
dc.references | Oh S, Daraio C, Chen LH, Pisanic TR, Finones RR, Jin S. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J Biomed Mater Res A. 2006;78:97–103. | pl_PL |
dc.references | Brammer KS, Oh S, Cobb CJ, Bjursten LM, van der Heyde H, Jin S. Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. Acta Biomater. 2009;5:3215–23. | pl_PL |
dc.references | Hazan R, Sreekantan S, Khalil AA, Nordin IM, Mat I. Surface engineering of titania for excellent fibroblast 3T3 cell-metal interaction. J Phys Sci. 2009;20:35–47. | pl_PL |
dc.references | Dalby MJ, Riehle MO, Johnstone H, Affrossman S, Curtis AS. Investigating the limits of filopodial sensing: a brief report using SEM to image the interaction between 10 nm high nano-topography and fibroblast filopodia. Cell Biol Int. 2004;28:229–36. | pl_PL |
dc.references | Riehle M, Dalby MJ, Johnstone H, McIntosh A, Affrossman S. Cell behaviour of rat calvaria bone cells on surfaces with random nanometric features. Mater Sci Eng C. 2003;23:337–40. | pl_PL |
dc.references | Swan EE, Popat KC, Grimes CA, Desai TA. Fabrication and evaluation of nanoporous alumina membranes for osteoblast culture. J Biomed Mater Res A. 2005;72:288–95. | pl_PL |
dc.references | Popat KC, Leoni L, Grimes CA, Desai TA. Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials. 2007;28:3188–97. | pl_PL |
dc.references | Cevc G, Vierl U. Nanotechnology and the transdermal route: a state of the art review and critical appraisal. J Control Release. 2010;141:277–99. | pl_PL |
dc.references | Brammer KS, Frandsen CJ, Jin S. TiO2 nanotubes for bone regeneration. Trends Biotechnol. 2012;30:315–22. | pl_PL |
dc.references | Puckett SD, Taylor E, Raimondo T, Webster TJ. The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials. 2010;31:706–13. | pl_PL |
dc.references | Ivanova EP, Truong VK, Wang JY, Berndt CC, Jones RT, Yusuf II, et al. Impact of nanoscale roughness of titanium thin film surfaces on bacterial retention. Langmuir. 2010;26:1973–82. | pl_PL |
dc.references | Ercan B, Kummer KM, Tarquinio KM, Webster TJ. Decreased Staphylococcus aureus biofilm growth on anodized nanotubular titanium and the effect of electrical stimulation. Acta Biomat. 2011;7:3003–12. | pl_PL |
dc.references | Ercan B, Taylor E, Alpaslan E, Webster TJ. Diameter of titanium nanotubes influences anti-bacterial efficacy. Nanotechnology. 2011;22:295102 11 pp. | pl_PL |
dc.references | Cendrowski K, Peruzynska M, Markowska-Szczupak A, Chen X, Wajda A, Lapczuk J, Kurzawski M, Kalenczuk RJ, Drozdzik M, Mijowska E. Antibacterial performance of nanocrystallined titania confined in mesoporous silica nanotubes. Biomed Microdevices. 2014;16:449–58. | pl_PL |
dc.references | Zhang H, Sun Y, Tian A, Xin Xue X, Wang L, Alquhali A, Bai X. Improved antibacterial activity and biocompatibility on vancomycin-loaded TiO2 nanotubes: in vivo and in vitro studies. Int J Nanomed. 2013;8:4379–89. | pl_PL |
dc.references | Lin W, Tan H, Duan Z, Yue B, Ma R, He G, Tang T. Inhibited bacterial biofilm formation and improved osteogenic activity on gentamicin-loaded titania nanotubes with various diameters. Biomed Microdevices. 2014;16:449–58. | pl_PL |
dc.references | Mathew D, Bhardwaj G, Wang Q, Sun L, Ercan B, Geetha M, Webster TJ. Decreased Staphylococcus aureus and increased osteoblast density on nanostructured electrophoretic-deposited hydroxyapatite on titanium without the use of pharmaceuticals. Int J Nanomed. 2014;9:1775–81. | pl_PL |
dc.contributor.authorEmail | zaneta.muchewicz@gmail.com | pl_PL |