Show simple item record

dc.contributor.authorLewandowska, Żaneta
dc.contributor.authorPiszczek, Piotr
dc.contributor.authorRadtke, Aleksandra
dc.contributor.authorJędrzejewski, Tomasz
dc.contributor.authorKozak, Wiesław
dc.contributor.authorSadowska, Beata
dc.date.accessioned2015-05-11T12:19:28Z
dc.date.available2015-05-11T12:19:28Z
dc.date.issued2015-03-20
dc.identifier.issn1573-4838
dc.identifier.urihttp://hdl.handle.net/11089/8716
dc.description.abstractThe highly ordered titanium dioxide nanotube coatings were produced under various electrochemical conditions on the surface of titanium foil. The anodization voltage changes proved to be a main factor which directly affects the nanotube morphology, structure, and wettability. Moreover we have noticed a significant dependence between the size and crystallinity of TiO2 layers and the adhesion/ proliferation of fibroblasts and antimicrobial properties. Cellular functionality were investigated for up to 3 days in culture using a cell viability assay and scanning electron microscopy. In general, results of our studies revealed that fibroblasts adhesion, proliferation, and differentiation on the titania nanotube coatings is clearly higher than on the surface of the pure titanium foil. The formation of crystallic islands in the nanotubes structure induced a significant acceleration in the growth rate of fibroblasts cells by as much as *200 %. Additionally, some types of TiO2 layers revealed the ability to the reduce of the staphylococcal aggregates/biofilm formation. The nanotube coatings formed during the anodization process using the voltage 4 V proved to be the stronger S. aureus aggregates/biofilm inhibitor in comparison to the uncovered titanium substrate. That accelerated eukaryotic cell growth and anti-biofilm activity is believed to be advantageous for faster cure of dental and orthopaedic patients, and also for a variety of biomedical diagnostic and therapeutic applications. Graphical Abstract The highly ordered titanium dioxide nanotube coatings were produced under various electrochemical conditions on the surface of titanium foil. The anodization voltage changes proved to be a main factor which directly affects the nanotube morphology, structure, and wettability. Moreover we have noticed a significant dependence between the size and crystallinity of TiO2 layers and the adhesion/proliferation of fibroblasts and antimicrobial properties.pl_PL
dc.description.sponsorshipCOST Action MP 1005 Namabio for the financial support of Short Term Scientific Missions (STSMs) in Tribology Centre, Danish Technological Institutepl_PL
dc.language.isoenpl_PL
dc.publisherSpringerpl_PL
dc.relation.ispartofseriesJournal of Materials Science: Materials in Medicine;(2015) 26:163
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.titleThe evaluation of the impact of titania nanotube covers morphology and crystal phase on their biological propertiespl_PL
dc.typeArticlepl_PL
dc.page.number1-12pl_PL
dc.contributor.authorAffiliationLewandowska Żaneta, Nicolaus Copernicus University, Department of Inorganic and Coordination Chemistry, Faculty of Chemistrypl_PL
dc.contributor.authorAffiliationPiszczek Piotr, Nicolaus Copernicus University, Department of Inorganic and Coordination Chemistry, Faculty of Chemistrypl_PL
dc.contributor.authorAffiliationRadtke Aleksandra, Nicolaus Copernicus University, Department of Inorganic and Coordination Chemistry, Faculty of Chemistrypl_PL
dc.contributor.authorAffiliationJędrzejewski Tomasz, Department of Immunology, Faculty of Biology and Environment Protectionpl_PL
dc.contributor.authorAffiliationKozak Wiesław, Department of Immunology, Faculty of Biology and Environment Protectionpl_PL
dc.contributor.authorAffiliationSadowska Beata, University of Lodz Department of Infectious Biology, Faculty of Biology and Environmental Protectionpl_PL
dc.referencesBauer S, Schmuki S, Von Der Mark K, Park J. Engineering biocompatible implant surfaces: Part I: Materials and surfaces. Prog Mater Sci. 2013;58:261–326.pl_PL
dc.referencesGeetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog Mater Sci. 2009;54:397–425.pl_PL
dc.referencesLiu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng. 2004;47:49–121.pl_PL
dc.referencesDas K, Bose S, Bandyopadhyay A. Surface modifications and cell-materials interactions with anodized Ti. Acta Biomater. 2007;3:573–85.pl_PL
dc.referencesYang W-E, Hsu M-L, Lin M-C, Chen Z-H, Chen L-H, Huang H-H. Nano/submicron-scale TiO2 network on titanium surface for dental implant application. J Alloy Compd. 2009;479:642–7.pl_PL
dc.referencesVon Der Mark K, Park J. Engineering biocompatible implant surfaces. Part II: cellular recognition of biomaterial surfaces: lessons from cell–matrix interactions. Prog Mater Sci. 2013;58:327–81.pl_PL
dc.referencesEisenbarth E, Velten D, Schenk-Meuser K, Linez P, Biehl V, Duschner H, et al. Interactions between cells and titanium surfaces. Biomol Eng. 2002;19:243–9.pl_PL
dc.referencesLiu HY, Wang XJ, Wang LP, Lei FY, Wang XF, Ai HJ. Effect of fluoride-ion implantation on the biocompatibility of titanium for dental applications. Appl Surf Sci. 2008;254:6305–12.pl_PL
dc.referencesTan AW, Pingguan-Murphy B, Ahmad R, Akbar SA. Review of titania nanotubes: fabrication and cellular response. Ceram Int. 2012;38:4421–35.pl_PL
dc.referencesMoseke C, Hage F, Vorndran E, Gbureck U. TiO2 nanotube arrays deposited on Ti substrate by anodic oxidation and their potential as a long-term drug delivery system for antimicrobial agents. Appl Surf Sci. 2012;258:5399–404.pl_PL
dc.referencesZhao L, Wang H, Huo K, Zhang X, Wang W, Zhang Y, et al. The osteogenic activity of strontium loaded titania nanotube arrays on titanium substrates. Biomaterials. 2013;34:19–29.pl_PL
dc.referencesNarayanan R, Kwon T-Y, Kim K-H. TiO2 nanotubes from stirred glycerol/NH4F electrolyte: roughness, wetting behavior and adhesion for implant applications. Mater Chem Phys. 2009;117:460–4pl_PL
dc.referencesKowalski D, Kim D, Schmuki P. TiO2 nanotubes, nanochannels and mesosponge: self-organized formation and applications. Nano Today. 2013;8:235–64.pl_PL
dc.referencesBrammer KS, Frandsen CJ, Jin S. TiO2 nanotubes for bone regeneration. Trends Biotechnol. 2012;30:315–22.pl_PL
dc.referencesZareidoost A, Yousefpour M, Ghaseme B, Amanzadeh A. The relationship of surface roughness and cell response of chemical surface modification of titanium. J Mater Sci Mater Med. 2012;23:1479–88.pl_PL
dc.referencesMinagar S, Berndt CC, Wang J, Ivanova E, Wen C. A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomater. 2012;8:2875–88.pl_PL
dc.referencesSmith BS, Yoriya S, Johnson T, Popat KC. Dermal fibroblast and epidermal keratinocyte functionality on titania nanotube arrays. Acta Biomater. 2011;7:2686–96.pl_PL
dc.referencesGittens RA, Olivares-Navarrete R, McLachlan T, Cai Y, Hyzy SL, Schneider JM, et al. Differential responses of osteoblast lineage cells to nanotopographically-modified, microroughened titanium-aluminum-vanadium alloy surfaces. Biomaterials. 2012; 33:8986–94.pl_PL
dc.referencesFuruhashi A, Ayukawa Y, Atsuta I, Okawachi H, Koyano K. The difference of fibroblast behavior on titanium substrata with different surface characteristics. Odontology. 2012;100:199–205.pl_PL
dc.referencesVelent D, Biehl V, Aubertin F, Valeske B, Possart W, Breme J. Preparation of TiO2 layers on cp-Ti and Ti6Al4V by thermal and anodic oxidation and by sol-gel coating techniques and their characterization. J Biomed Mat Res A. 2002;59:18–28.pl_PL
dc.referencesSi HY, Sun ZH, Kang X, Zi WW, Zhang HL. Voltage-dependent morphology, wettability and photocurrent response of anodic porous titanium dioxide films. Microporous Mesoporous Mater. 2009;119:75–81.pl_PL
dc.referencesLi Y, Ma Q, Han J, Ji L, Wang J, Chen J, et al. Controllable preparation, growth mechanism and the properties research of TiO2 nanotube arrays. Appl Surf Sci. 2014;297:103–8.pl_PL
dc.referencesXie ZB, Blackwood DJ. Effects of anodization parameters on the formation of titania nanotubes in ethylene glycol. Electrochim Acta. 2010;56:905–12.pl_PL
dc.referencesYang B, Ng CK, Fung MK, Ling CC, Djurisˇic´ AB, Fung S. Annealing study of titanium oxide nanotube arrays. Mater Chem Phys. 2011;130:1227–31.pl_PL
dc.referencesFang D, Luo Z, Huang K, Lagoudas DC. Effect of heat treatment on morphology, crystalline structure and photocatalysis properties of TiO2 nanotubes on Ti substrate and freestanding membrane. Appl Surf Sci. 2011;257:6451–61.pl_PL
dc.referencesOu H-H, Lo S-L. Review of titania nanotubes synthesized via the hydrothermal treatment: fabrication, modification, and application. Sep Purif Technol. 2007;58:179–91.pl_PL
dc.referencesXiong J, Wang Y, Li Y, Hodgson D. Phase transformation and thermal structure stability of titania nanotube films with different morphologies. Thin Solid Films. 2012;526:116–9.pl_PL
dc.referencesKar A, Raja KS, Misra M. Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications. Surf CoatTechnol. 2006;201:3723–31.pl_PL
dc.referencesMacak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, et al. TiO2 nanotubes: self-organized electrochemical formation, properties and applications. Curr Opin Solid State Mater Sci. 2007;11:3–18.pl_PL
dc.referencesZhao J, Wang X, Chen R, Li L. Fabrication of titanium oxide nanotube arrays by anodic oxidation. Solid State Commun. 2005;134:705–10.pl_PL
dc.referencesTransferetti BC, Davanzo CU, Zoppi RA, da Cruz NC, de Moraes MAB. Berreman effect applied to phase characterization of thin films supported on metallic substrates: the case of TiO2. Phys Rev B. 2001;64:125404.pl_PL
dc.referencesMantzila AG, Prodromidis MI. Development and study of anodic Ti/TiO2 electrodes and their potential use as impedimetric immunosensors. Electrochim Acta. 2006;51:3537–42.pl_PL
dc.referencesBauer S, Park J, Von Der Mark K, Schmuki P. Improved attachment of mesenchymal stem cells on super hydrophobic TiO2 nanotubes. Acta Biomater. 2008;4:1576–82.pl_PL
dc.referencesMacak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, et al. TiO2 nanotubes: self-organized electrochemical formation, properties and applications. Curr Opin Solid State Mater Sci. 2007;11:3–18.pl_PL
dc.referencesYu WQ, Jiang XQ, Zhang FQ, Xu L. The effect of anatase TiO2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation. J Biomed Mater Res A. 2010;94:1012–22.pl_PL
dc.referencesOh S, Daraio C, Chen LH, Pisanic TR, Finones RR, Jin S. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J Biomed Mater Res A. 2006;78:97–103.pl_PL
dc.referencesBrammer KS, Oh S, Cobb CJ, Bjursten LM, van der Heyde H, Jin S. Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. Acta Biomater. 2009;5:3215–23.pl_PL
dc.referencesHazan R, Sreekantan S, Khalil AA, Nordin IM, Mat I. Surface engineering of titania for excellent fibroblast 3T3 cell-metal interaction. J Phys Sci. 2009;20:35–47.pl_PL
dc.referencesDalby MJ, Riehle MO, Johnstone H, Affrossman S, Curtis AS. Investigating the limits of filopodial sensing: a brief report using SEM to image the interaction between 10 nm high nano-topography and fibroblast filopodia. Cell Biol Int. 2004;28:229–36.pl_PL
dc.referencesRiehle M, Dalby MJ, Johnstone H, McIntosh A, Affrossman S. Cell behaviour of rat calvaria bone cells on surfaces with random nanometric features. Mater Sci Eng C. 2003;23:337–40.pl_PL
dc.referencesSwan EE, Popat KC, Grimes CA, Desai TA. Fabrication and evaluation of nanoporous alumina membranes for osteoblast culture. J Biomed Mater Res A. 2005;72:288–95.pl_PL
dc.referencesPopat KC, Leoni L, Grimes CA, Desai TA. Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials. 2007;28:3188–97.pl_PL
dc.referencesCevc G, Vierl U. Nanotechnology and the transdermal route: a state of the art review and critical appraisal. J Control Release. 2010;141:277–99.pl_PL
dc.referencesBrammer KS, Frandsen CJ, Jin S. TiO2 nanotubes for bone regeneration. Trends Biotechnol. 2012;30:315–22.pl_PL
dc.referencesPuckett SD, Taylor E, Raimondo T, Webster TJ. The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials. 2010;31:706–13.pl_PL
dc.referencesIvanova EP, Truong VK, Wang JY, Berndt CC, Jones RT, Yusuf II, et al. Impact of nanoscale roughness of titanium thin film surfaces on bacterial retention. Langmuir. 2010;26:1973–82.pl_PL
dc.referencesErcan B, Kummer KM, Tarquinio KM, Webster TJ. Decreased Staphylococcus aureus biofilm growth on anodized nanotubular titanium and the effect of electrical stimulation. Acta Biomat. 2011;7:3003–12.pl_PL
dc.referencesErcan B, Taylor E, Alpaslan E, Webster TJ. Diameter of titanium nanotubes influences anti-bacterial efficacy. Nanotechnology. 2011;22:295102 11 pp.pl_PL
dc.referencesCendrowski K, Peruzynska M, Markowska-Szczupak A, Chen X, Wajda A, Lapczuk J, Kurzawski M, Kalenczuk RJ, Drozdzik M, Mijowska E. Antibacterial performance of nanocrystallined titania confined in mesoporous silica nanotubes. Biomed Microdevices. 2014;16:449–58.pl_PL
dc.referencesZhang H, Sun Y, Tian A, Xin Xue X, Wang L, Alquhali A, Bai X. Improved antibacterial activity and biocompatibility on vancomycin-loaded TiO2 nanotubes: in vivo and in vitro studies. Int J Nanomed. 2013;8:4379–89.pl_PL
dc.referencesLin W, Tan H, Duan Z, Yue B, Ma R, He G, Tang T. Inhibited bacterial biofilm formation and improved osteogenic activity on gentamicin-loaded titania nanotubes with various diameters. Biomed Microdevices. 2014;16:449–58.pl_PL
dc.referencesMathew D, Bhardwaj G, Wang Q, Sun L, Ercan B, Geetha M, Webster TJ. Decreased Staphylococcus aureus and increased osteoblast density on nanostructured electrophoretic-deposited hydroxyapatite on titanium without the use of pharmaceuticals. Int J Nanomed. 2014;9:1775–81.pl_PL
dc.contributor.authorEmailzaneta.muchewicz@gmail.compl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 3.0 Polska
Except where otherwise noted, this item's license is described as Uznanie autorstwa 3.0 Polska