Pokaż uproszczony rekord

dc.contributor.authorSzatylowicz, Halina
dc.contributor.authorKrygowski, Tadeusz M.
dc.contributor.authorSolà, Miquel
dc.contributor.authorPalusiak, Marcin
dc.contributor.authorDominikowska, Justyna
dc.contributor.authorStasyuk, Olga A.
dc.contributor.authorPoater, Jordi
dc.date.accessioned2015-05-11T08:25:21Z
dc.date.available2015-05-11T08:25:21Z
dc.date.issued2015-02-25
dc.identifier.issn1432-2234
dc.identifier.urihttp://hdl.handle.net/11089/8710
dc.description.abstractIn this work, we have studied the relative stability of 1,2- and 2,3-quinones. While 1,2-quinones have a closed-shell singlet ground state, the ground state for the studied 2,3-isomers is open-shell singlet, except for 2,3-naphthaquinone that has a closed-shell singlet ground state. In all cases, 1,2-quinones are more stable than their 2,3-counterparts. We analyzed the reasons for the higher stability of the 1,2-isomers through energy decomposition analysis in the framework of Kohn–Sham molecular orbital theory. The results showed that we have to trace the origin of 1,2-quinones’ enhanced stability to the more efficient bonding in the π-electron system due to more favorable overlap between the SOMOπ of the ·C4n−2H2n–CH·· and ··CH–CO–CO· fragments in the 1,2-arrangement. Furthermore, whereas 1,2-quinones present a constant trend with their elongation for all analyzed properties (geometric, energetic, and electronic), 2,3-quinone derivatives present a substantial breaking in monotonicity.pl_PL
dc.description.sponsorshipEuropean Union in the framework of European Social Fund through the Warsaw University of Technology Development Programme. O.A. S., H. S. and T.M. K.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringer Berlin Heidelbergpl_PL
dc.relation.ispartofseriesTheoretical Chemistry Accounts;134:35
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.subjectQuinonespl_PL
dc.subjectBenzenoidspl_PL
dc.subjectEnergy decomposition analysispl_PL
dc.subjectAromaticitypl_PL
dc.titleWhy 1,2‑quinone derivatives are more stable than their 2,3‑analogues?pl_PL
dc.typeArticlepl_PL
dc.page.number412-418pl_PL
dc.contributor.authorAffiliationSzatylowicz Halina, Warsaw University of Technology Faculty of Chemistrypl_PL
dc.contributor.authorAffiliationKrygowski Tadeusz M., Warsaw University Department of Chemistrypl_PL
dc.contributor.authorAffiliationSolà Miquel, Universitat de Girona, Departament de Química, Institut de Química Computacional i Catàlisipl_PL
dc.contributor.authorAffiliationPalusiak Marcin, University of Łódź, Department of Theoretical and Structural Chemistry, Faculty of Chemistrypl_PL
dc.contributor.authorAffiliationDominikowska Justyna, University of Łódź, Department of Theoretical and Structural Chemistry, Faculty of Chemistrypl_PL
dc.contributor.authorAffiliationStasyuk Olga A., Warsaw University of Technology Faculty of Chemistrypl_PL
dc.contributor.authorAffiliationPoater Jordi, Vrije Universiteit, Department of Theoretical Chemistry, Amsterdam Center for Multiscale Modelingpl_PL
dc.referencesIUPAC (1997) Compendium of chemical terminology, 2nd edpl_PL
dc.referencesHirst J (2010) Towards the molecular mechanism of respiratory complex I. Biochem J 425:327–339pl_PL
dc.referencesNowicka B, Kruk J (2010) Occurrence, biosynthesis and function of isoprenoid quinones. Biochim Biophys Acta 1797:1587–1605pl_PL
dc.referencesChambers JQ (1988) Electrochemistry of quinones. In: Patai S, Rappoport Z (eds) The chemistry of quinonoid compounds, Chap 12, vol 2. Wiley, New York, pp 719–757pl_PL
dc.referencesGuin PS, Das S, Mandal PC (2008) Electrochemical reduction of sodium 1,4-dihydroxy-9,10- anthraquinone-2-sulphonate in aqueous and aqueous dimethyl formamide mixed solvent: a cyclic voltammetric study. Int J Electrochem Sci 3:1016–1028pl_PL
dc.referencesKruszewski J, Krygowski TM (1972) Definition of aromaticity basing on the harmonic oscillator model. Tetrahedron Lett 13:3839–3842pl_PL
dc.referencesKrygowski TM (1993) Crystallographic studies of inter- and intramolecular interactions reflected in aromatic character of π-electron systems. J Chem Inf Comput Sci 33:70–78pl_PL
dc.referencesBultinck P, Rafat M, Ponec R, van Gheluwe B, Carbó-Dorca R, Popelier P (2006) Electron delocalization and aromaticity in linear polyacenes: atoms in molecules multicenter delocalization index. J Phys Chem A 110:7642–7648pl_PL
dc.referencesBultinck P, Ponec R, Van Damme S (2005) Multicenter bond indices as a new measure of aromaticity in polycyclic aromatic hydrocarbons. J Phys Org Chem 18:706–718pl_PL
dc.referencesMatito E, Duran M, Solà M (2005) The aromatic fluctuation index (FLU): A new aromaticity index based on electron delocalization. J Chem Phys 122:014109 Erratum: The aromatic fluctuation index (FLU): A new aromaticity index based on electron delocalization. J Chem Phys 122:014109 (2005). (2006) íbid 125:059901pl_PL
dc.referencesSzatyłowicz H, Krygowski TM, Palusiak M, Poater J, Solà M (2011) Routes of π-electron delocalization in 4-substituted- 1,2-benzoquinones. J Org Chem 76:550–556pl_PL
dc.referencesAromaticity, pseudo-aromaticity, antiaromaticity. Proceedings of an International Symposium held in Jerusalem 1970. Bergmann ED, Pullman B (eds) Israel Academy of Sciences and Humanities: Jerusalem, 1971pl_PL
dc.referencesLloyd D (1990) The chemistry of conjugated cyclic compounds: to be or not to be like benzene. Wiley, New Yorkpl_PL
dc.referencesMinkin VI, Glukhovtsev MN, Simkin BYA (1995) Aromaticity and antiaromaticity. Wiley, New Yorkpl_PL
dc.referencesSchleyer PVR (ed) (2001) Aromaticity. Chem Rev 101:1115–1566pl_PL
dc.referencesShahamirian M, Cyran´ski MK, Krygowski TM (2011) Conjugation paths in monosubstituted 1,2-and 2,3-naphthoquinones. J Phys Chem A 115:12688–12694pl_PL
dc.referencesCiesielski A, Krygowski TM, Cyran´ski MK, Dobrowolski MA, Balaban AT (2009) Are thermodynamic and kinetic stabilities correlated? A topological index of reactivity toward electrophiles used as a criterion of aromaticity of polycyclic benzenoid hydrocarbons. J Chem Inf Model 49:369–376pl_PL
dc.referencesDelamere C, Jakins C, Lewars E (2001) Tests for aromaticity applied to the pentalenoquinones—a computational study. Can J Chem 79:1492–1504pl_PL
dc.referencesBecke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652pl_PL
dc.referencesLee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789pl_PL
dc.referencesStephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627pl_PL
dc.referencesKrishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654pl_PL
dc.referencesMcLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J Chem Phys 72:5639–5648pl_PL
dc.referencesFrisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AJ, Burant C, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski JD, Fox J (2009) Gaussian 09, Revision A.1. Gaussian, Inc., Wallingfordpl_PL
dc.referencesHachmann J, Dorando JJ, Avilés M, Chan GK-L (2007) The radical character of the acenes: a density matrix renormalization group study. J Chem Phys 127:134309pl_PL
dc.referencesMalrieu JP, Trinquier G (2012) A recipe for geometry optimization of diradicalar singlet states from broken-symmetry calculations. J Phys Chem A 116:8226–8237pl_PL
dc.referencesSnyder GJ (2012) Rational design of high-spin biradicaloids in the isobenzofulvene and isobenzoheptafulvene series. J Phys Chem A 116:5272–5291pl_PL
dc.referencesChilkuri VG, Trinquier G, Amor NB, Malrieu JP, Guihéry N (2013) In search of organic compounds presenting a double exchange phenomenon. J Chem Theory Comput 9:4805–4815pl_PL
dc.referencesLuo D, Lee S, Zheng B, Sun Z, Zeng W, Huang K-W, Furukawa K, Kim D, Webster RD, Wu J (2014) Indolo[2,3-b]carbazoles with tunable ground states: how Clar’s aromatic sextet determines the singlet biradical character. Chem Sci 5:4944–4952pl_PL
dc.referencesTrinquier G, Malrieu JP (2015) Kekulé versus Lewis: when aromaticity prevents electron pairing and imposes polyradical character. Chem Eur J 21:814–828pl_PL
dc.referencesPoater J, Bickelhaupt FM, Sola M (2007) Didehydrophenanthrenes: structure, singlet–triplet splitting, and aromaticity. J Phys Chem A 111:5063–5070pl_PL
dc.referencesFonseca Guerra C, Snijders JG, te Velde G, Baerends EJ (1998) Towards an order-N DFT method. Theor Chem Acc 99:391–403pl_PL
dc.referenceste Velde G, Bickelhaupt FM, Baerends EJ, Guerra CF, van Gisbergen SJA, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22:931–967pl_PL
dc.referencesBaerends EJ, Autschbach J, Bérces A, Berger JA, Bickelhaupt FM, Bo C, de Boeij PL, Boerrigter PM, Cavallo L, Chong DP, Deng L, Dickson RM, Ellis DE, van Faassen M, Fan L, Fischer TH, Fonseca Guerra C, van Gisbergen SJA, Groeneveld JA, Gritsenko OV, Grüning M, Harris FE, van den Hoek P, Jacob CR, Jacobsen H, Jensen L, Kadantsev ES, van Kessel G, Klooster R, Kootstra F, van Lenthe E, McCormack DA, Michalak A, Neugebauer J, Nicu VP, Osinga VP, Patchkovskii S, Philipsen PHT,Post D, Pye CC, Ravenek W, Romaniello P, Ros P, Schipper PRT, Schreckenbach G, Snijders J, Solà M, Swart M, Swerhone D, te Velde G, Vernooijs P, Versluis L, Visscher L, Visser O, Wang F, Wesolowski TA, van Wezenbeek EM, Wiesenekker G, Wolff SK, Woo TK, Yakovlev AL, Ziegler T. Scientific Computing & Modeling (SCM), Amsterdam, The Netherlands. See also: www.scm.compl_PL
dc.referencesKitaura K, Morokuma K (1976) New energy decomposition scheme for molecular-interactions within Hartree–Fock approximation. Int J Quantum Chem 10:325–340pl_PL
dc.referencesMorokuma K (1977) Why do molecules interact? The origin of electron donor–acceptor complexes, hydrogen bonding, and proton affinity. Acc Chem Res 10:294–300pl_PL
dc.referencesZiegler T, Rauk A (1977) On the calculation of bonding energies by the Hartree Fock Slater method—I. The transition state method. Theor Chim Acta 46:1–10pl_PL
dc.referencesZiegler T, Rauk A (1979) A theoretical study of the ethylenemetal bond in complexes between Cu+, Ag+, Au+, Pt0 , or Pt2+ and ethylene, based on the Hartree–Fock–Slater transition-state method. Inorg Chem 18:1558–1565pl_PL
dc.referencesBickelhaupt FM, Baerends EJ (2000) Kohn–Sham density functional theory: predicting and understanding chemistry. Rev Comput Chem 15:1–86pl_PL
dc.referencesvon Hopffgarten M, Frenking G (2012) Energy decomposition analysis. WIREs Comput Mol Sci 2:43–62pl_PL
dc.referencesBickelhaupt FM, Nibbering NMM, van Wezenbeek EM, Baerends EJ (1992) Central bond in the three CN• dimers NC–CN, CN–CN, and CN–NC: electron pair bonding and Pauli repulsion effects. J Phys Chem 96:4864–4873pl_PL
dc.referencesPvR Schleyer (2001) Aromaticity: introduction. Chem Rev 101:1115–1117pl_PL
dc.referencesKrygowski TM, Cyran´ski MK (2001) Structural aspects of aromaticity. Chem Rev 101:1385–1419pl_PL
dc.referencesBader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, New Yorkpl_PL
dc.referencesGiambiagi M, de Giambiagi MS, dos Santos CD, de Figueiredo AP (2000) Multicenter bond indices as a measure of aromaticity. Phys Chem Chem Phys 2:3381–3392pl_PL
dc.referencesBultinck P, Fias S, Ponec R (2006) Local aromaticity in polycyclic aromatic hydrocarbons: electron delocalization versus magnetic indices. Chem Eur J 12:8813–8818pl_PL
dc.referencesMandado M, Bultinck P, González-Moa MJ, Mosquera RA (2006) Multicenter delocalization indices vs. properties of the electron density at ring critical points: a study on polycyclic aromatic hydrocarbons. Chem Phys Lett 433:5–9pl_PL
dc.referencesBultinck P (2007) Critical analysis of the local aromaticity concept in polyaromatic hydrocarbons. Faraday Discuss 135:347–365pl_PL
dc.referencesBultinck P, Ponec R, Carbó-Dorca R (2007) Aromaticity in linear polyacenes: generalized population analysis and molecular quantum similarity approach. J Comput Chem 28:152–160pl_PL
dc.referencesFias S, Fowler PW, Delgado JL, Hahn U, Bultinck P (2008) Correlation of delocalization indices and current-density maps in polycyclic aromatic hydrocarbons. Chem Eur J 14:3093–3099pl_PL
dc.referencesFeixas F, Matito E, Poater J, Solà M (2008) On the performance of some aromaticity indices: a critical assessment using a test set. J Comput Chem 29:1543–1554pl_PL
dc.referencesMatito E, Solà M (2009) The role of electronic delocalization in transition metal complexes from the electron localization function and the quantum theory of atoms in molecules viewpoints. Coord Chem Rev 253:647–665pl_PL
dc.referencesFias S, Van Damme S, Bultinck P (2010) Multidimensionality of delocalization indices and nucleus-independent chemical shifts in polycyclic aromatic hydrocarbons II: proof of further nonlocality. J Comput Chem 31:2286–2293pl_PL
dc.referencesFeixas F, Jiménez-Halla JOC, Matito E, Poater J, Solà M (2010) A test to evaluate the performance of aromaticity descriptors in all-metal and semimetal clusters. An appraisal of electronic and magnetic indicators of aromaticity. J Chem Theory Comput 6:1118–1130pl_PL
dc.referencesFeixas F, Matito E, Duran M, Poater J, Solà M (2011) Aromaticity and electronic delocalization in all-metal clusters with single, double, and triple aromatic character. Theor Chem Acc 128:419–431pl_PL
dc.referencesFeixas F, Matito E, Poater J, Solà M (2013) Metalloaromaticity. WIREs Comput Mol Sci 3:105–122pl_PL
dc.referencesMatito E (2006) In: ESI-3D: electron sharing indexes program for 3D molecular space partitioning. institute of computational chemistry and catalysis, Girona. http://iqc.udg.es/~eduard/ESIpl_PL
dc.referencesPearson RG (2005) Chemical hardness and density functional theory. J Chem Sci 117:369–377pl_PL
dc.referencesBendikov M, Duong HM, Starkey K, Houk KN, Carter EA, Wudl F (2004) Oligoacenes: theoretical prediction of open-shell singlet diradical ground states. J Am Chem Soc 126:7416–7417 (2004) Erratum: Oligoacenes: Theoretical prediction of open-shell singlet diradical ground states (Journal of the American Chemical Society (2004), ibid 126:10493 (7416–7417))pl_PL
dc.referencesPayne MM, Parkin SR, Anthony JE (2005) Functionalized higher acenes: hexacene and heptacene. J Am Chem Soc 127:8028–8029pl_PL
dc.referencesPoater J, Bofill JM, Alemany P, Solà M (2005) Local aromaticity of the lowest-lying singlet states of [n]acenes (n = 6–9). J Phys Chem A 109:10629–10632pl_PL
dc.referencesClar E (1972) The aromatic sextet. Wiley, New Yorkpl_PL
dc.referencesSolà M (2013) Forty years of Clar’s aromatic π-sextet rule. Front Chem 1:22pl_PL
dc.referencesSun Z, Zeng Z, Wu J (2013) Benzenoid polycyclic hydrocarbons with an open-shell biradical ground state. Chem Asian J 8:2894–2904pl_PL
dc.referencesSun Z, Lee S, Park KH, Zhu X, Zhang W, Zheng B, Hu P, Zeng Z, Das S, Li Y, Chi C, Li R-W, Huang K-W, Ding J, Kim D, Wu J (2013) Dibenzoheptazethrene isomers with different biradical characters: an exercise of Clar’s aromatic sextet rule in singlet biradicaloids. J Am Chem Soc 135:18229–18236pl_PL
dc.referencesSu Y, Wang X, Xheng X, Zhang Z, Song Y, Sui Y, Li Y, Wang X (2014) Tuning ground states of Bis(triarylamine) Dications: from a closed-shell singlet to a diradicaloid with an excited triplet state. Angew Chem Int Ed 53:2857–2861pl_PL
dc.referencesShimizu A, Hirao Y, Matsumoto K, Kurata H, Kubo T, Uruichi M, Yakushi K (2012) Aromaticity and π-bond covalency: prominent intermolecular covalent bonding interaction of a Kekulé hydrocarbon with very significant singlet biradical character. Chem Commun 48:5629–5631pl_PL
dc.referencesMatsui H, Fukuda K, Hirosaki Y, Takamuku S, Champagne B, Nakano M (2013) Theoretical study on the diradical characters and third-order nonlinear optical properties of cyclic thiazyl diradical compounds. Chem Phys Lett 585:112–116pl_PL
dc.referencesNobusue S, Miyoshi H, Shimizu A, Hisaki I, Fukuda K, Nakano M, Tobe Y (2015) Tetracyclopenta[def, jkl, pqr, vwx]tetraphenylene: a potential tetraradicaloid hydrocarbon. Angew Chem Int Ed 54:2090–2094pl_PL
dc.referencesYoneda K, Matsui H, Fukuda K, Takamuku S, Kishi R, Nakano M (2014) Open-shell characters and second hyperpolarizabilities for hexagonal graphene nanoflakes including boron nitride domains. Chem Phys Lett 595–596:220–225pl_PL
dc.referencesShimizu A, Hirao Y, Kubo T, Nakano M, Botek E, Champagne B (2012) Theoretical consideration of singlet open-shell character of polyperiacenes using Clar’s aromatic sextet valence bond model and quantum chemical calculations. AIP Conf Proc 1504:399–405pl_PL
dc.referencesHoffmann R (1983) Foreword to: determination of the geometrical structure of free molecules. Vilkov IV, Mastryukov VS, Sadova NI (eds) Mir Publishers, Moscowpl_PL
dc.referencesKrygowski TM (1972) Towards the unification of the substituent (position) constants in Hammett–Streitwieser equation. Tetrahedron 28:4981–4987pl_PL
dc.referencesBaker R, Eaborn C, Taylor R (1972) Aromatic reactivity. Part L. Thiophen, benzo[b]thiophen, anisole, and thioanisole in detritiation. Substituent constants for use in electrophilic aromatic substitution. J Chem Soc Perkin Trans 2:97–101pl_PL
dc.referencesPoater J, Visser R, Solà M, Bickelhaupt FM (2007) Polycyclic benzenoids: Why kinked is more stable than straight. J Org Chem 72:1134–1142pl_PL
dc.contributor.authorEmailhalina@ch.pw.edu.plpl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 3.0 Polska
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 3.0 Polska