dc.contributor.author | Szatylowicz, Halina | |
dc.contributor.author | Krygowski, Tadeusz M. | |
dc.contributor.author | Solà, Miquel | |
dc.contributor.author | Palusiak, Marcin | |
dc.contributor.author | Dominikowska, Justyna | |
dc.contributor.author | Stasyuk, Olga A. | |
dc.contributor.author | Poater, Jordi | |
dc.date.accessioned | 2015-05-11T08:25:21Z | |
dc.date.available | 2015-05-11T08:25:21Z | |
dc.date.issued | 2015-02-25 | |
dc.identifier.issn | 1432-2234 | |
dc.identifier.uri | http://hdl.handle.net/11089/8710 | |
dc.description.abstract | In this work, we have studied the relative stability
of 1,2- and 2,3-quinones. While 1,2-quinones have
a closed-shell singlet ground state, the ground state for
the studied 2,3-isomers is open-shell singlet, except for
2,3-naphthaquinone that has a closed-shell singlet ground
state. In all cases, 1,2-quinones are more stable than their
2,3-counterparts. We analyzed the reasons for the higher
stability of the 1,2-isomers through energy decomposition
analysis in the framework of Kohn–Sham molecular orbital
theory. The results showed that we have to trace the origin
of 1,2-quinones’ enhanced stability to the more efficient
bonding in the π-electron system due to more favorable
overlap between the SOMOπ of the ·C4n−2H2n–CH·· and
··CH–CO–CO· fragments in the 1,2-arrangement. Furthermore,
whereas 1,2-quinones present a constant trend with their elongation for all analyzed properties (geometric,
energetic, and electronic), 2,3-quinone derivatives present a
substantial breaking in monotonicity. | pl_PL |
dc.description.sponsorship | European
Union in the framework of European Social Fund through the Warsaw
University of Technology Development Programme. O.A. S., H.
S. and T.M. K. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Springer Berlin Heidelberg | pl_PL |
dc.relation.ispartofseries | Theoretical Chemistry Accounts;134:35 | |
dc.rights | Uznanie autorstwa 3.0 Polska | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/pl/ | * |
dc.subject | Quinones | pl_PL |
dc.subject | Benzenoids | pl_PL |
dc.subject | Energy decomposition analysis | pl_PL |
dc.subject | Aromaticity | pl_PL |
dc.title | Why 1,2‑quinone derivatives are more stable than their 2,3‑analogues? | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 412-418 | pl_PL |
dc.contributor.authorAffiliation | Szatylowicz Halina, Warsaw University of Technology Faculty of Chemistry | pl_PL |
dc.contributor.authorAffiliation | Krygowski Tadeusz M., Warsaw University Department of Chemistry | pl_PL |
dc.contributor.authorAffiliation | Solà Miquel, Universitat de Girona, Departament de Química, Institut de Química Computacional i Catàlisi | pl_PL |
dc.contributor.authorAffiliation | Palusiak Marcin, University of Łódź, Department of Theoretical and Structural Chemistry, Faculty of Chemistry | pl_PL |
dc.contributor.authorAffiliation | Dominikowska Justyna, University of Łódź, Department of Theoretical and Structural Chemistry, Faculty of Chemistry | pl_PL |
dc.contributor.authorAffiliation | Stasyuk Olga A., Warsaw University of Technology Faculty of Chemistry | pl_PL |
dc.contributor.authorAffiliation | Poater Jordi, Vrije Universiteit, Department of Theoretical Chemistry, Amsterdam Center for Multiscale Modeling | pl_PL |
dc.references | IUPAC (1997) Compendium of chemical terminology, 2nd ed | pl_PL |
dc.references | Hirst J (2010) Towards the molecular mechanism of respiratory complex I. Biochem J 425:327–339 | pl_PL |
dc.references | Nowicka B, Kruk J (2010) Occurrence, biosynthesis and function of isoprenoid quinones. Biochim Biophys Acta 1797:1587–1605 | pl_PL |
dc.references | Chambers JQ (1988) Electrochemistry of quinones. In: Patai S, Rappoport Z (eds) The chemistry of quinonoid compounds, Chap 12, vol 2. Wiley, New York, pp 719–757 | pl_PL |
dc.references | Guin PS, Das S, Mandal PC (2008) Electrochemical reduction of sodium 1,4-dihydroxy-9,10- anthraquinone-2-sulphonate in aqueous and aqueous dimethyl formamide mixed solvent: a cyclic voltammetric study. Int J Electrochem Sci 3:1016–1028 | pl_PL |
dc.references | Kruszewski J, Krygowski TM (1972) Definition of aromaticity basing on the harmonic oscillator model. Tetrahedron Lett 13:3839–3842 | pl_PL |
dc.references | Krygowski TM (1993) Crystallographic studies of inter- and intramolecular interactions reflected in aromatic character of π-electron systems. J Chem Inf Comput Sci 33:70–78 | pl_PL |
dc.references | Bultinck P, Rafat M, Ponec R, van Gheluwe B, Carbó-Dorca R, Popelier P (2006) Electron delocalization and aromaticity in linear polyacenes: atoms in molecules multicenter delocalization index. J Phys Chem A 110:7642–7648 | pl_PL |
dc.references | Bultinck P, Ponec R, Van Damme S (2005) Multicenter bond indices as a new measure of aromaticity in polycyclic aromatic hydrocarbons. J Phys Org Chem 18:706–718 | pl_PL |
dc.references | Matito E, Duran M, Solà M (2005) The aromatic fluctuation index (FLU): A new aromaticity index based on electron delocalization. J Chem Phys 122:014109 Erratum: The aromatic fluctuation index (FLU): A new aromaticity index based on electron delocalization. J Chem Phys 122:014109 (2005). (2006) íbid 125:059901 | pl_PL |
dc.references | Szatyłowicz H, Krygowski TM, Palusiak M, Poater J, Solà M (2011) Routes of π-electron delocalization in 4-substituted- 1,2-benzoquinones. J Org Chem 76:550–556 | pl_PL |
dc.references | Aromaticity, pseudo-aromaticity, antiaromaticity. Proceedings of an International Symposium held in Jerusalem 1970. Bergmann ED, Pullman B (eds) Israel Academy of Sciences and Humanities: Jerusalem, 1971 | pl_PL |
dc.references | Lloyd D (1990) The chemistry of conjugated cyclic compounds: to be or not to be like benzene. Wiley, New York | pl_PL |
dc.references | Minkin VI, Glukhovtsev MN, Simkin BYA (1995) Aromaticity and antiaromaticity. Wiley, New York | pl_PL |
dc.references | Schleyer PVR (ed) (2001) Aromaticity. Chem Rev 101:1115–1566 | pl_PL |
dc.references | Shahamirian M, Cyran´ski MK, Krygowski TM (2011) Conjugation paths in monosubstituted 1,2-and 2,3-naphthoquinones. J Phys Chem A 115:12688–12694 | pl_PL |
dc.references | Ciesielski A, Krygowski TM, Cyran´ski MK, Dobrowolski MA, Balaban AT (2009) Are thermodynamic and kinetic stabilities correlated? A topological index of reactivity toward electrophiles used as a criterion of aromaticity of polycyclic benzenoid hydrocarbons. J Chem Inf Model 49:369–376 | pl_PL |
dc.references | Delamere C, Jakins C, Lewars E (2001) Tests for aromaticity applied to the pentalenoquinones—a computational study. Can J Chem 79:1492–1504 | pl_PL |
dc.references | Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652 | pl_PL |
dc.references | Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789 | pl_PL |
dc.references | Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627 | pl_PL |
dc.references | Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654 | pl_PL |
dc.references | McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J Chem Phys 72:5639–5648 | pl_PL |
dc.references | Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AJ, Burant C, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski JD, Fox J (2009) Gaussian 09, Revision A.1. Gaussian, Inc., Wallingford | pl_PL |
dc.references | Hachmann J, Dorando JJ, Avilés M, Chan GK-L (2007) The radical character of the acenes: a density matrix renormalization group study. J Chem Phys 127:134309 | pl_PL |
dc.references | Malrieu JP, Trinquier G (2012) A recipe for geometry optimization of diradicalar singlet states from broken-symmetry calculations. J Phys Chem A 116:8226–8237 | pl_PL |
dc.references | Snyder GJ (2012) Rational design of high-spin biradicaloids in the isobenzofulvene and isobenzoheptafulvene series. J Phys Chem A 116:5272–5291 | pl_PL |
dc.references | Chilkuri VG, Trinquier G, Amor NB, Malrieu JP, Guihéry N (2013) In search of organic compounds presenting a double exchange phenomenon. J Chem Theory Comput 9:4805–4815 | pl_PL |
dc.references | Luo D, Lee S, Zheng B, Sun Z, Zeng W, Huang K-W, Furukawa K, Kim D, Webster RD, Wu J (2014) Indolo[2,3-b]carbazoles with tunable ground states: how Clar’s aromatic sextet determines the singlet biradical character. Chem Sci 5:4944–4952 | pl_PL |
dc.references | Trinquier G, Malrieu JP (2015) Kekulé versus Lewis: when aromaticity prevents electron pairing and imposes polyradical character. Chem Eur J 21:814–828 | pl_PL |
dc.references | Poater J, Bickelhaupt FM, Sola M (2007) Didehydrophenanthrenes: structure, singlet–triplet splitting, and aromaticity. J Phys Chem A 111:5063–5070 | pl_PL |
dc.references | Fonseca Guerra C, Snijders JG, te Velde G, Baerends EJ (1998) Towards an order-N DFT method. Theor Chem Acc 99:391–403 | pl_PL |
dc.references | te Velde G, Bickelhaupt FM, Baerends EJ, Guerra CF, van Gisbergen SJA, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22:931–967 | pl_PL |
dc.references | Baerends EJ, Autschbach J, Bérces A, Berger JA, Bickelhaupt FM, Bo C, de Boeij PL, Boerrigter PM, Cavallo L, Chong DP, Deng L, Dickson RM, Ellis DE, van Faassen M, Fan L, Fischer TH, Fonseca Guerra C, van Gisbergen SJA, Groeneveld JA, Gritsenko OV, Grüning M, Harris FE, van den Hoek P, Jacob CR, Jacobsen H, Jensen L, Kadantsev ES, van Kessel G, Klooster R, Kootstra F, van Lenthe E, McCormack DA, Michalak A, Neugebauer J, Nicu VP, Osinga VP, Patchkovskii S, Philipsen PHT,Post D, Pye CC, Ravenek W, Romaniello P, Ros P, Schipper PRT, Schreckenbach G, Snijders J, Solà M, Swart M, Swerhone D, te Velde G, Vernooijs P, Versluis L, Visscher L, Visser O, Wang F, Wesolowski TA, van Wezenbeek EM, Wiesenekker G, Wolff SK, Woo TK, Yakovlev AL, Ziegler T. Scientific Computing & Modeling (SCM), Amsterdam, The Netherlands. See also: www.scm.com | pl_PL |
dc.references | Kitaura K, Morokuma K (1976) New energy decomposition scheme for molecular-interactions within Hartree–Fock approximation. Int J Quantum Chem 10:325–340 | pl_PL |
dc.references | Morokuma K (1977) Why do molecules interact? The origin of electron donor–acceptor complexes, hydrogen bonding, and proton affinity. Acc Chem Res 10:294–300 | pl_PL |
dc.references | Ziegler T, Rauk A (1977) On the calculation of bonding energies by the Hartree Fock Slater method—I. The transition state method. Theor Chim Acta 46:1–10 | pl_PL |
dc.references | Ziegler T, Rauk A (1979) A theoretical study of the ethylenemetal bond in complexes between Cu+, Ag+, Au+, Pt0 , or Pt2+ and ethylene, based on the Hartree–Fock–Slater transition-state method. Inorg Chem 18:1558–1565 | pl_PL |
dc.references | Bickelhaupt FM, Baerends EJ (2000) Kohn–Sham density functional theory: predicting and understanding chemistry. Rev Comput Chem 15:1–86 | pl_PL |
dc.references | von Hopffgarten M, Frenking G (2012) Energy decomposition analysis. WIREs Comput Mol Sci 2:43–62 | pl_PL |
dc.references | Bickelhaupt FM, Nibbering NMM, van Wezenbeek EM, Baerends EJ (1992) Central bond in the three CN• dimers NC–CN, CN–CN, and CN–NC: electron pair bonding and Pauli repulsion effects. J Phys Chem 96:4864–4873 | pl_PL |
dc.references | PvR Schleyer (2001) Aromaticity: introduction. Chem Rev 101:1115–1117 | pl_PL |
dc.references | Krygowski TM, Cyran´ski MK (2001) Structural aspects of aromaticity. Chem Rev 101:1385–1419 | pl_PL |
dc.references | Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, New York | pl_PL |
dc.references | Giambiagi M, de Giambiagi MS, dos Santos CD, de Figueiredo AP (2000) Multicenter bond indices as a measure of aromaticity. Phys Chem Chem Phys 2:3381–3392 | pl_PL |
dc.references | Bultinck P, Fias S, Ponec R (2006) Local aromaticity in polycyclic aromatic hydrocarbons: electron delocalization versus magnetic indices. Chem Eur J 12:8813–8818 | pl_PL |
dc.references | Mandado M, Bultinck P, González-Moa MJ, Mosquera RA (2006) Multicenter delocalization indices vs. properties of the electron density at ring critical points: a study on polycyclic aromatic hydrocarbons. Chem Phys Lett 433:5–9 | pl_PL |
dc.references | Bultinck P (2007) Critical analysis of the local aromaticity concept in polyaromatic hydrocarbons. Faraday Discuss 135:347–365 | pl_PL |
dc.references | Bultinck P, Ponec R, Carbó-Dorca R (2007) Aromaticity in linear polyacenes: generalized population analysis and molecular quantum similarity approach. J Comput Chem 28:152–160 | pl_PL |
dc.references | Fias S, Fowler PW, Delgado JL, Hahn U, Bultinck P (2008) Correlation of delocalization indices and current-density maps in polycyclic aromatic hydrocarbons. Chem Eur J 14:3093–3099 | pl_PL |
dc.references | Feixas F, Matito E, Poater J, Solà M (2008) On the performance of some aromaticity indices: a critical assessment using a test set. J Comput Chem 29:1543–1554 | pl_PL |
dc.references | Matito E, Solà M (2009) The role of electronic delocalization in transition metal complexes from the electron localization function and the quantum theory of atoms in molecules viewpoints. Coord Chem Rev 253:647–665 | pl_PL |
dc.references | Fias S, Van Damme S, Bultinck P (2010) Multidimensionality of delocalization indices and nucleus-independent chemical shifts in polycyclic aromatic hydrocarbons II: proof of further nonlocality. J Comput Chem 31:2286–2293 | pl_PL |
dc.references | Feixas F, Jiménez-Halla JOC, Matito E, Poater J, Solà M (2010) A test to evaluate the performance of aromaticity descriptors in all-metal and semimetal clusters. An appraisal of electronic and magnetic indicators of aromaticity. J Chem Theory Comput 6:1118–1130 | pl_PL |
dc.references | Feixas F, Matito E, Duran M, Poater J, Solà M (2011) Aromaticity and electronic delocalization in all-metal clusters with single, double, and triple aromatic character. Theor Chem Acc 128:419–431 | pl_PL |
dc.references | Feixas F, Matito E, Poater J, Solà M (2013) Metalloaromaticity. WIREs Comput Mol Sci 3:105–122 | pl_PL |
dc.references | Matito E (2006) In: ESI-3D: electron sharing indexes program for 3D molecular space partitioning. institute of computational chemistry and catalysis, Girona. http://iqc.udg.es/~eduard/ESI | pl_PL |
dc.references | Pearson RG (2005) Chemical hardness and density functional theory. J Chem Sci 117:369–377 | pl_PL |
dc.references | Bendikov M, Duong HM, Starkey K, Houk KN, Carter EA, Wudl F (2004) Oligoacenes: theoretical prediction of open-shell singlet diradical ground states. J Am Chem Soc 126:7416–7417 (2004) Erratum: Oligoacenes: Theoretical prediction of open-shell singlet diradical ground states (Journal of the American Chemical Society (2004), ibid 126:10493 (7416–7417)) | pl_PL |
dc.references | Payne MM, Parkin SR, Anthony JE (2005) Functionalized higher acenes: hexacene and heptacene. J Am Chem Soc 127:8028–8029 | pl_PL |
dc.references | Poater J, Bofill JM, Alemany P, Solà M (2005) Local aromaticity of the lowest-lying singlet states of [n]acenes (n = 6–9). J Phys Chem A 109:10629–10632 | pl_PL |
dc.references | Clar E (1972) The aromatic sextet. Wiley, New York | pl_PL |
dc.references | Solà M (2013) Forty years of Clar’s aromatic π-sextet rule. Front Chem 1:22 | pl_PL |
dc.references | Sun Z, Zeng Z, Wu J (2013) Benzenoid polycyclic hydrocarbons with an open-shell biradical ground state. Chem Asian J 8:2894–2904 | pl_PL |
dc.references | Sun Z, Lee S, Park KH, Zhu X, Zhang W, Zheng B, Hu P, Zeng Z, Das S, Li Y, Chi C, Li R-W, Huang K-W, Ding J, Kim D, Wu J (2013) Dibenzoheptazethrene isomers with different biradical characters: an exercise of Clar’s aromatic sextet rule in singlet biradicaloids. J Am Chem Soc 135:18229–18236 | pl_PL |
dc.references | Su Y, Wang X, Xheng X, Zhang Z, Song Y, Sui Y, Li Y, Wang X (2014) Tuning ground states of Bis(triarylamine) Dications: from a closed-shell singlet to a diradicaloid with an excited triplet state. Angew Chem Int Ed 53:2857–2861 | pl_PL |
dc.references | Shimizu A, Hirao Y, Matsumoto K, Kurata H, Kubo T, Uruichi M, Yakushi K (2012) Aromaticity and π-bond covalency: prominent intermolecular covalent bonding interaction of a Kekulé hydrocarbon with very significant singlet biradical character. Chem Commun 48:5629–5631 | pl_PL |
dc.references | Matsui H, Fukuda K, Hirosaki Y, Takamuku S, Champagne B, Nakano M (2013) Theoretical study on the diradical characters and third-order nonlinear optical properties of cyclic thiazyl diradical compounds. Chem Phys Lett 585:112–116 | pl_PL |
dc.references | Nobusue S, Miyoshi H, Shimizu A, Hisaki I, Fukuda K, Nakano M, Tobe Y (2015) Tetracyclopenta[def, jkl, pqr, vwx]tetraphenylene: a potential tetraradicaloid hydrocarbon. Angew Chem Int Ed 54:2090–2094 | pl_PL |
dc.references | Yoneda K, Matsui H, Fukuda K, Takamuku S, Kishi R, Nakano M (2014) Open-shell characters and second hyperpolarizabilities for hexagonal graphene nanoflakes including boron nitride domains. Chem Phys Lett 595–596:220–225 | pl_PL |
dc.references | Shimizu A, Hirao Y, Kubo T, Nakano M, Botek E, Champagne B (2012) Theoretical consideration of singlet open-shell character of polyperiacenes using Clar’s aromatic sextet valence bond model and quantum chemical calculations. AIP Conf Proc 1504:399–405 | pl_PL |
dc.references | Hoffmann R (1983) Foreword to: determination of the geometrical structure of free molecules. Vilkov IV, Mastryukov VS, Sadova NI (eds) Mir Publishers, Moscow | pl_PL |
dc.references | Krygowski TM (1972) Towards the unification of the substituent (position) constants in Hammett–Streitwieser equation. Tetrahedron 28:4981–4987 | pl_PL |
dc.references | Baker R, Eaborn C, Taylor R (1972) Aromatic reactivity. Part L. Thiophen, benzo[b]thiophen, anisole, and thioanisole in detritiation. Substituent constants for use in electrophilic aromatic substitution. J Chem Soc Perkin Trans 2:97–101 | pl_PL |
dc.references | Poater J, Visser R, Solà M, Bickelhaupt FM (2007) Polycyclic benzenoids: Why kinked is more stable than straight. J Org Chem 72:1134–1142 | pl_PL |
dc.contributor.authorEmail | halina@ch.pw.edu.pl | pl_PL |