dc.contributor.author | Antczak, Tadeusz | |
dc.date.accessioned | 2015-05-05T08:23:28Z | |
dc.date.available | 2015-05-05T08:23:28Z | |
dc.date.issued | 2014-06-05 | |
dc.identifier.issn | 1573-2916 | |
dc.identifier.uri | http://hdl.handle.net/11089/8662 | |
dc.description.abstract | In the paper, we introduce the concepts of G-type I and generalized G-type I
functions for a new class of nonconvex multiobjective variational control problems. For
such nonconvex vector optimization problems, we prove sufficient optimality conditions for
weakly efficiency, efficiency and properly efficiency under assumptions that the functions
constituting them are G-type I and/or generalized G-type I objective and constraint functions.
Further, for the considered multiobjective variational control problem, its dual multiobjective
variational control problem is given and several duality results are established under
(generalized) G-type I objective and constraint functions. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Springer | pl_PL |
dc.relation.ispartofseries | Journal of Global Optimization;April 2015, Volume 61, Issue 4 | |
dc.rights | Uznanie autorstwa 3.0 Polska | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/pl/ | * |
dc.subject | Multiobjective variational problems | pl_PL |
dc.subject | Properly efficient solution | pl_PL |
dc.subject | G-type I objective and constraint functions | pl_PL |
dc.subject | Optimality conditions | pl_PL |
dc.subject | Duality | pl_PL |
dc.title | Sufficient optimality criteria and duality for multiobjective variational control problems with G-type I objective and constraint functions | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 695-720 | pl_PL |
dc.contributor.authorAffiliation | University of Łódź, Faculty of Mathematics | pl_PL |
dc.references | Aghezzaf, B., Hachimi, M.: Generalized invexity and duality in multiobjective programming problems. J. Global Optim. 18, 91–101 (2000) | pl_PL |
dc.references | Antczak, T.: New optimality conditions and duality results of G-type in differentiable mathematical programming. Nonlinear Anal. 66, 1617–1632 (2007) | pl_PL |
dc.references | Antczak, T.: On G-invex multiobjective programming. Part I. Optimality. J. Global Optim. 43, 97–109 (2009) | pl_PL |
dc.references | Antczak, T.: On G-invex multiobjective programming. Part II. Duality. J. Global Optim. 43, 111–140 (2009) | pl_PL |
dc.references | Arana-Jiménez, M., Osuna-Gómez, R., Rufián-Lizana, A., Ruiz-Garzón, G.: KT-invex control problem. Appl. Math. Comput. 197, 489–496 (2008) | pl_PL |
dc.references | Arana-Jiménez, M., Osuna-Gómez, R., Rufián-Lizana, A., Ruiz-Garzón, G.: KT-invex control problem. Appl. Math. Comput. 197, 489–496 (2008) | pl_PL |
dc.references | Arana-Jiménez, M., Hernández-Jiménez, B., Ruiz-Garzón, G., Rufián-Lizana, A.: FJ-Invex control problem. Appl. Math. Lett. 22, 1887–1891 (2009) | pl_PL |
dc.references | Bhatia, D., Kumar, P.: Multiobjective control problem with generalized invexity. J. Math. Anal. Appl. 189, 676–692 (1995) | pl_PL |
dc.references | Bhatia, D., Mehra, A.: Optimality conditions and duality for multiobjective variational problems with generalized B-invexity. J. Math. Anal. Appl. 234, 341–360 (1999) | pl_PL |
dc.references | Christensen, G.S., El-Hawary, M.E., Soliman, S.A.: Optimal Control Applications in Electric Power System. Plenum, New York (1987) | pl_PL |
dc.references | Craven, B.D.: Mathematical Programming and Control Theory. Chapman and Hall, London (1978) | pl_PL |
dc.references | Geoffrion, A.M.: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22, 618–630 (1968) | pl_PL |
dc.references | Gramatovici, S.: Optimality conditions in multiobjective control problemswith generalized invexity.Ann. Univ. Craiova Math. Comp. Sci. Ser. 32, 150–157 (2005) | pl_PL |
dc.references | Hanson, M.A.: Bounds for functionally convex optimal control problems. J. Math. Anal. Appl. 8, 84–89 (1964) | pl_PL |
dc.references | Hanson, M.A.: On sufficiency of the Kuhn–Tucker conditions. J. Math. Anal. Appl. 80, 545–550 (1981) | pl_PL |
dc.references | Hanson, M.A., Mond, B.:Necessary and sufficient conditions in constrained optimization. Math. Program. 37, 51–58 (1987) | pl_PL |
dc.references | Hachimi, M., Aghezzaf, B.: Sufficiency and duality in multiobjective variational problems with generalized type I functions. J. Global Optim. 34, 191–218 (2006) | pl_PL |
dc.references | Khazafi, K., Rueda, N.: Multiobjective variational programming under generalized Type I univexity. J. Optim. Theory Appl. 142, 363–376 (2009) | pl_PL |
dc.references | Khazafi, K., Rueda, N., Enflo, P.: Sufficiency and duality for multiobjective control problems under generalized (B, ρ)-type I functions. J. Global Optim. 46, 111–132 (2010) | pl_PL |
dc.references | Kim, D.S., Kim, M.H.: Generalized type I invexity and duality in multiobjective variational problems. J. Math. Anal. Appl. 307, 533–554 (2005) | pl_PL |
dc.references | Leitmann, G.: The Calculus of Variations and Optimal Control. Plenum Press, New York (1981) | pl_PL |
dc.references | Mishra, S.K., Mukherjee, R.N.: On efficiency and duality formultiobjective variational problems. J. Math. Anal. Appl. 187, 40–54 (1994) | pl_PL |
dc.references | Mititelu, ¸ S., Postolache, M.: Mond–Weir dualities with Lagrangians for multiobjective fractional and non-fractional variational problems. J. Adv. Math. Stud. 3, 41–58 (2010) | pl_PL |
dc.references | Nahak, C., Nanda, C.: Duality for multiobjective variational problems with invexity. Optimization 36, 235–248 (1996) | pl_PL |
dc.references | Pereira, F.L.: Control design for autonomous vehicles: a dynamic optimization perspective. Eur. J. Control 7, 178–202 (2001) | pl_PL |
dc.references | Pereira, F.L.: A maximum principle for impulsive control problems with state constraints. Comput. Appl. Math. 19, 1–19 (2000) | pl_PL |
dc.references | Swam, G.W.: Applications of Optimal Control Theory in Biomedicine. Marcel Dekker, New York (1984) | pl_PL |
dc.references | Xiuhong, Ch.: Duality for a class of multiobjective control problems. J. Math. Anal. Appl. 267, 377–394 (2002) | pl_PL |
dc.references | Zhang, J., Liu, S., Li, L., Feng, Q.: Sufficiency and duality for multiobjective variational control problems with G-invexity. Comput. Math. Appl. 63, 838–850 (2012) | pl_PL |
dc.references | Zhian, L., Qingkai, Y.: Duality for a class of multiobjective control problems with generalized invexity. J. Math. Anal. Appl. 256, 446–461 (2001) | pl_PL |
dc.contributor.authorEmail | antczak@math.uni.lodz.pl | pl_PL |