dc.contributor.author | Gerszberg, Aneta | |
dc.contributor.author | Hnatuszko-Konka, Katarzyna | |
dc.contributor.author | Kowalczyk, Tomasz | |
dc.contributor.author | Kononowicz, Andrzej K. | |
dc.date.accessioned | 2015-04-28T11:46:17Z | |
dc.date.available | 2015-04-28T11:46:17Z | |
dc.date.issued | 2014-11-30 | |
dc.identifier.issn | 1573-5044 | |
dc.identifier.uri | http://hdl.handle.net/11089/8327 | |
dc.description.abstract | Originating in the Andes, the tomato (Solanum
lycopersicum L.) was imported to Europe in the 16th
century. At present, it is an important crop plant cultivated
all over the world, and its production and consumption
continue to increase. This popular vegetable is known as a
major source of important nutrients including lycopene, bcarotene,
flavonoids and vitamin C as well as hydroxycinnamic
acid derivatives. Since the discovery that lycopene
has anti-oxidative, anti-cancer properties, interest in
tomatoes has grown rapidly. The development of genetic
engineering tools and plant biotechnology has opened great
opportunities for engineering tomato plants. This review
presents examples of successful tissue culture and genetically
modified tomatoes which resistance to a range of
environmental stresses improved, along with fruit quality.
Additionally, a successful molecular farming model was
established. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Springer Netherlands | pl_PL |
dc.relation.ispartofseries | Plant Cell, Tissue and Organ Culture;(2015) 120 | |
dc.rights | Uznanie autorstwa 3.0 Polska | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/pl/ | * |
dc.subject | Tomato | pl_PL |
dc.subject | Tissue culture | pl_PL |
dc.subject | Transformation | pl_PL |
dc.subject | Molecular farming | pl_PL |
dc.title | Tomato (Solanum lycopersicum L.) in the service of biotechnology | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 881–902 | pl_PL |
dc.contributor.authorAffiliation | University of Lodz, Department of Genetics, Plant Molecular Biology and Biotechnology | pl_PL |
dc.references | Adato A, Mandel T, Mintz-Oron S, Venger I, Levy D, Yativ M, Domınguez E, Wang Z, De Vos RC, Jetter R, Schreiber L, Heredia A, Rogachev I, Aharoni A (2009) Fruit-surface flavonoid accumulation in tomato is controlled by a SlMYB12- regulated transcriptional network. PLoS Genet 512:e1000777. doi:10.1371/journal.pgen.1000777 | pl_PL |
dc.references | Afroz A, Chaudry Z, Rashid U, Khan MR, Ghulam MA (2010) Enhanced regeneration in explants of tomato (Lycopersicon esculentum L.) with the treatment of coconut water. Afr J Biotechnol 24:3634–3644. doi:10.5897/AJB2010.000-3228 | pl_PL |
dc.references | Ajenifujah-Solebo SOA, Isu NA, Olorode O, Ingelbrecht I, Abiade OO (2012) Tissue culture regeneration of three Nigerian cultivars of tomatoes. Afr J Plant Sci 14:370–375. doi:10.5539/ sar.v2n3p58 | pl_PL |
dc.references | Alc´azar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249. doi:10.10007/s00425-010-1130-0 | pl_PL |
dc.references | Ali AA, Yossef TR, El-Banna A (2012) Cytokinin-cytokinin interaction ameliorates the callus induction and plant regeneration of tomato (Solanum lycopersicon Mill.). Acta Agron Hung 1:47–55. doi:10.1556/AAgr.60.2012.1.6 | pl_PL |
dc.references | Alvarez ML, Cardineau GA (2010) Prevention of bubonic and pneumonic plague using plant-derived vaccines. Biotechnol Adv 28:184–196. doi:10.1016/j.biotechadv.2009.11.006 | pl_PL |
dc.references | Alvarez ML, Pinyerd HL, Crisantes JD, Rigano MM, Pinkhasov J, Walmsley AM, Mason HS, Cardineau GA (2006) Plant-made subunit vaccine against pneumonic and bubonic plague is orally immunogenic in mice. Vaccine 24:2477–2490. doi:10.1016/j. vaccine.2005.12.057 | pl_PL |
dc.references | ´ lvarez-Viveros MF, Inostroza-Blancheteau C, Timmermann T, Gonza´lez M, Arce-Johnson P (2013) Overexpression of GlyI and GlyII genes in transgenic tomato (Solanum lycopersicum Mill.) plants confers salt tolerance by decreasing oxidative stress. Mol Biol Rep 4:3281–3290. doi:10.1007/s11033-012- 2403-4 | pl_PL |
dc.references | Apel W, Bock R (2009) Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion. Plant Physiol 1:59–66. doi:10.1104/pp.109.140533 | pl_PL |
dc.references | Ashakiran K, Sivankalyani V, Jayanthi M, Govindasamy V, Girija S (2011) Genotype specific shoots regeneration form different explants of tomato (Solanum lycopersicum L.) using TDZ. Asian J Plant Sci Res 2:107–113 | pl_PL |
dc.references | Baesi M, Nabati Ahmadi D, Rajabi-Memari H, Siahpoosh MR, Abdollahi MR, Jaberolansar N (2011) Cloning and transformation of hepatitis B surface antigen (HBsAg) gene to tomato (Lycopersicon esculentum Mill.). Jundishapur J Nat Pharm Prod 1:32–41 | pl_PL |
dc.references | Bahurpe JV, Patil SC, Pawar BD, Chimote VP, Kale AA (2013) Callus induction and plantlet regeneration in tomato (Solanum lycopersicum L.). J Cell Tissue Res 2:3765–3768 | pl_PL |
dc.references | Bai Y, Lindhout P (2007) Domestication and breeding of tomatoes: what have we gained and what can we gain in the future? Ann Bot 100:1085–1094. doi:10.1093/aob/mcm150 | pl_PL |
dc.references | Bailey LB (2010) Folate in health and disease, second edition. CRC Press Taylor & Francis group 6000 Broken Sound Parkway NW, Suite 300 Boca Rarton, FL 33487-2742 | pl_PL |
dc.references | Ballester AR, Molthoff J, de Vos R, te Lintel Hekkert B, Orzaez D, Fernandez-Moreno JP, Tripodi P, Grandillo S, Martin C, Heldens J, Ykema M, Granell A, Bovy A (2010) Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit colour. Plant Physiol 1:71–84. doi:10.1104/pp.109. 147322 | pl_PL |
dc.references | Barabasz A, Wilkowska A, Ruszczyn´ska A, Bulska E, Hanikenne M, Czarny M, Kra¨mer U, Antosiewicz DM (2012) Metal response of transgenic tomato plants expressing P1B-ATPase. Physiol Plant 145:315–331. doi:10.1111/j.1399-3054.2012.01584.x | pl_PL |
dc.references | Bartoszewski G, Niedziela A, Szwacka M, Niemirowicz-Szczyt K (2003) Modification of tomato taste in transgenic plants carrying a thaumatine gene from Thaumatococcus daniellii benth. Plant Breed 4:347–351. doi:10.1046/j.1439-0523.2003.00864.x | pl_PL |
dc.references | Bassa C, Mila I, Bouzayen M, Audran-Delalande C (2012) Phenotypes associated with down-regulation of Sl-IAA27 support functional diversity among Aux/IAA family members in tomato. Plant Cell Physiol 9:1583–1595. doi:10.1093/pcp/pcs101 | pl_PL |
dc.references | Bassolino L, Zhang Y, Schoonbeek HJ, Kiferle C, Perata P, Martin C (2013) Accumulation of anthocyanins in tomato skin extends shelf life. New Phytol 3:650–655. doi:10.1111/nph.12524 | pl_PL |
dc.references | Bhaskaran S, Savithramma DL (2011) Co-expression of Pennisetum glaucum vacuolar Na?/H? antiporter and Arabidopsis H? - pyrophosphatase enhances salt tolerance in transgenic tomato. J Exp Bot 15:5561–5570. doi:10.1093/jxb/err237 | pl_PL |
dc.references | Bhatia P, Ashwath N (2005) Effect of duration of light: dark cycles on in vitro shoot regeneration of tomato. Asian J Plant Sci 3:255–260. doi:10.3923/ajps.2005.255.260 | pl_PL |
dc.references | Bhatia P, Ashwath N (2008) Improving the quality of in vitro cultured shoots of tomato (Lycopersicon esculentum Mill.) cv. Red Coat. Biotechnology 2:188–193. doi:10.3923/biotech.2008.188.193 | pl_PL |
dc.references | Biswas SK, Pandey NK, Rajik M (2012) Inductions of defense response in tomato against Fusarium Wilt through inorganic chemicals as inducers. J Plant Pathol Microbiol 3:128. doi:10. 4172/2157-7471.1000128 | pl_PL |
dc.references | Brummell AA, Harpster MH, Civello PC, Palys JM, Bennett AB, Dunsmuira P (1999) Modification of expansin protein abundance in tomato fruit alters softening and cellwall polymer metabolism during ripening. Plant Cell 11:2203–2216. doi:10.1105/tpc.11.11.2203 | pl_PL |
dc.references | Butelli E, Titta L, Giorgio M, Mock HP, Matros A, Peterek S, Schijlen EGM, Hall RD, Bovy AG, Luo J, Martin C (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26:1301–1308. doi:10.1038/nbt.1506 | pl_PL |
dc.references | Chaudry A, Abbas S, Yasmin A, Rashid H, Ahmed H, Anjum MA (2010) Tissue culture studies in tomato (Lycopesricon esculentum) var. Moneymaker. Pak J Bot 1:155–163 | pl_PL |
dc.references | Chen SC, Liu AR, Wang FH, Ahammed G (2009a) Combined overexpression of chitinase and defensine genes transgenic tomato enhances resistance to Botrytis cinerea. Afr J Biotechnol 20:5182–5188. doi:10.5897/AJB09.704 | pl_PL |
dc.references | Chen Y, Wang A, Zhao L, Shen G, Cui L, Tang K (2009b) Expression of thymosin a1 concatemer in transgenic tomato (Solanum lycopersicum) fruits. Biotechnol Appl Biochem 52:303–312. doi:10.1042/BA20080054 | pl_PL |
dc.references | Cheng L, Zou Y, Ding S, Zhang J, Yu X, Cao J, Lu G (2009) Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. J Integr Plant Biol 5:489–499. doi:10.1111/j.1744-7909.2009.00816.x | pl_PL |
dc.references | Chetty VJ, Ceballos N, Garcia D, Narvaez-Vasquez J, Lopez W, Orozco-Cardenas ML (2013) Evaluation of four Agrobacterium tumefaciens strains for the genetic transformation of tomato (Solanum lycopersicum L.) cultivar Micro-Tom. Plant Cell Rep 32:239–247. doi:10.1007/s00299-012-1358-1 | pl_PL |
dc.references | Colliver S, Bovy A, Collins G, Muir S, Robinson S, de Vos CHR, Verhoeyen ME (2002) Improving the nutritional content of tomatoes through reprogramming their flavonoid biosynthetic pathway. Phytochem Rev 1:113–123 | pl_PL |
dc.references | Cong B, Tanksley SD (2006) FW2.2 and cell cycle control in developing tomato fruit: a possible example of gene co-option in the evolution of a novel organ. Plant Mol Biol 62:867–880. doi:10.1007/s11103-006-9062-6 | pl_PL |
dc.references | Cueno ME, Hibi Y, Karamatsu K, Yasutomi Y, Imai K, Laurena AC, Okamoto T (2010) Preferential expression and immunogenicity of HIV-1 Tat fusion protein expressed in tomato plant. Transgenic Res 5:889–895. doi:10.1007/s11248-009-9358-9 | pl_PL |
dc.references | D’Ambrosio C, Stigliani AL, Giorio G (2011) Overexpression of CrtR-b2 (carotene beta hydroxylase 2) from S. lycopersicum L. differentially affects xanthophylls synthesis and accumulation in transgenic tomato plants. Transgenic Res 20:47–60. doi:10.1007/ s11248-010-9387-4 | pl_PL |
dc.references | Dai CX, Mertz D, Lambeth VN (1988) Effect of seedling age, orientation and genotype of hypocotyl and cotyledon explants of tomato on shoot and root regeneration. Genet Manip Crops Newslett 4:26–35. doi:10.3103/S1068367413030178 | pl_PL |
dc.references | Davidovich-Rikanati R, Sitrit Y, Tadmor Y, Iijima Y, Bilenko N, Bar E, Carmona B, Fallik E, Dudai NE, Simon JE, Pichersky E, Lewinsohn E (2007) Enrichment of tomato flavour by diversion of the early plastidial terpenoid pathway. Nat Biotechnol 25:899–901. doi:10.1038/nbt1312 | pl_PL |
dc.references | Davuluri GR, van Tuinen A, Fraser PD, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlig J, Bramley PM, Pennings HM, Bowler C (2005) Fruit-specific RNAimediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat Biotechnol 7:890–895. doi:10. 1038/nbt1108 | pl_PL |
dc.references | de Jong M, Wolters-Arts M, Garcıa-Martınez JL, Mariani C, Vriezen WH (2011) The Solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) mediates cross-talk between auxin and gibberellins signalling during tomato fruit set and development. J Exp Bot 2:617–626. doi:10.1093/jxb/erq293 | pl_PL |
dc.references | de la Garza RID, Quinlivan PE, Klaus SMJ, Basset GJC, Gregory JF, Hanson AD (2004) Folate biofortification in tomatoes by engineering the pteridine branch of folate synthesis. Proc Natl Acad Sci USA 38:13720–13725. doi:10.1073/pnas.0404208101 | pl_PL |
dc.references | de la Garza RID, Gregory JF, Hanson AD (2007) Folate biofortification of tomato fruit. Proc Natl Acad Sci USA 10:4218–4222. doi:10.1073/pnas.0700409104 | pl_PL |
dc.references | Dharmapuria S, Rosatia C, Pallara P, Aquilani R, Bouvier F, Camara B, Giuliano G (2002) Metabolic engineering of xanthophyll content in tomato fruits. FEBS Lett 519:30–34. doi:10.1016/ S0014-5793(02)02699-6 | pl_PL |
dc.references | Elı´as-Lo´pez AL, Marquina B, Gutie´rrez-Ortega A, Aguilar D, Gomez-Lim M, Herna´ndez-Pando R (2008) Transgenic tomato expressing interleukin-12 has a therapeutic effect in a murine model of progressive pulmonary tuberculosis. Clin Exp Immunol 154:123–133. doi:10.1111/j.1365-2249.2008.03723.x | pl_PL |
dc.references | El-Siddig MA, El-Hussein AA, Saker MM (2011) Agrobacteriummediated transformation of tomato plants expressing defensin gene. Int J Agric Res 4:323–334. doi:10.3923/ijar.2011.323.334 | pl_PL |
dc.references | Enfissi EMA, Fraser PD, Lois LM, Boronat A, Schuch W, Bramley PM (2005) Metabolic engineering of the mevalonate and nonmevalonate isopentenyl diphosphate-forming pathways for the production of health-promoting isoprenoids in tomato. Plant Biotechnol J 3:17–27. doi:10.1111/j.1467-7652.2004.00091.x FAOSTAT (2011). http://faostat3.fao.org/faostat-gateway/go/to/down load/Q/QC/E | pl_PL |
dc.references | Federal Office of Consumer Protection and Food Safety (German) and Partners (2009) Long-term effects of genetically modified (GM) crops on helath and the environment (including biodiversity): Prioritisation of potential risks and delimitation of uncertainties. Federal Office of Consumer of Food Safety, Berlin. http://bch. cbd.int/database/record-v4-sthtml?documentid=101007 | pl_PL |
dc.references | Fernandez-Moreno JP, Orzaez D, Granell A (2013) VIGS: a tool to study fruit development in Solanum lycopersicum. Methods Mol Biol 975:183–196. doi:10.1007/978-1-62703-278-0_14 | pl_PL |
dc.references | Foolad MR (2007) Genome mapping and molecular breeding of tomato. Int J Plant Genomics 64358:52. doi:10.1155/2007/64358 | pl_PL |
dc.references | Fraser PD, Romer S, Shipton CA, Mills PB, Kiano JW, Misawa N, Drake RG, Schuch W, Bramley PM (2002) Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proc Natl Acad Sci USA 2:1092–1109. doi:10.1073/pnas.241374598 | pl_PL |
dc.references | Fraser PD, Enfissi EMA, Halket JM, Truesdale MR, Yu D, Gerrish C, Bramleya PM (2007) Manipulation of phytoene levels in tomato fruit: effects on isoprenoids, plastids, and intermediary metabolism. Plant Cell 19:3194–3211. doi:10.1105/tpc.106.049817 | pl_PL |
dc.references | Fuentes AD, Ramos PL, Sanchez Y, Callard D, Ferreira A, Tiel K, Cobas K, Rodriguez R, Borroto C, Doreste V, Pujol M (2008) A transformation procedure for recalcitrant tomato by addressing transgenic plant-recovery limiting factors. Biotechnol J 3:1088–1093. doi:10.1002/biot.200700187 | pl_PL |
dc.references | Fukkuda-Parr S (2012) The green revolution: GM crops and unequal development. UK Bath Press, Bath | pl_PL |
dc.references | Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158. doi:10.1016/0014-4827(68)90403-5 | pl_PL |
dc.references | Garchery C, Gest N, Do PT, Alhagdow M, Baldet P, Menard G, Rothan C, Massot C, Gautier H, Aarrouf J, Fernie AR, Stevens R (2013) A diminution in ascorbate oxidase activity affects carbon allocation and improves yield in tomato under water deficyt. Plant Cell Environ 36:159–175. doi:10.1111/j.1365-3040.2012. 02564.x | pl_PL |
dc.references | Garcia V, Stevens R, Gil L, Gilbert L, Gest N, Petit J, Faurobert M, Maucourt M, Deborde C, Moing A, Poessel JL, Jacob D, Bouchet JP, Giraudel JL, Gouble B, Page D, Alhagdow M, Massot C, Gautier H, Lemaire-Chamley M, Rolin D, Usadel B, Lahaye M, Causse M, Baldet P, Rothan C (2009) An integrative genomics approach for deciphering the complex interactions between ascorbate metabolism and fruit growth and composition in tomato. C R Biol 11:1007–1021. doi:10.1016/j.crvi.2009.09. 013 | pl_PL |
dc.references | Garcia-Hurtado N, Carrera E, Ruiz-Rivero O, Lo´pez-Gresa MP, Hedden P, Gong F, Garcı´a-Martı´nez JL (2012) The characterization of transgenic tomato overexpressing gibberellin 20- oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellins biosynthetic pathway. J Exp Bot 16:5803–5813. doi:10.1093/jxb/ers229 | pl_PL |
dc.references | Gilbert L, Alhagdow M, Nunes-Nesi A, Quemener B, Guillon F, Bouchet B, Faurobert M, Gouble B, Page D, Garcia V, Peti J, Stevens R, Causse M, Fernie AR, Lahaye M, Rothan C, Baldet P (2009) GDP-D-mannose 3,5-epimerase (GME) plays a key role at the intersection of ascorbate and non-cellulosic cell-wall biosynthesis in tomato. Plant J 3:499–508. doi:10.1111/j.1365- 313X.2009.03972.x | pl_PL |
dc.references | Giliberto L, Perrotta G, Pallara P, Weller JL, Fraser PD, Bramley PM, Fiore A, Tavazza M, Giuliano G (2005) Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol 137:199–208. doi:10.1111/j.1365-313X.2009.03972.x | pl_PL |
dc.references | Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. doi:10.1016/j.plphy.2010.08.016 | pl_PL |
dc.references | Głowacka B (2004) Influence of light colour on micropropagation of tomato (Lycopersicon esculentum Mill.). Biotechnologia 2:168–175 | pl_PL |
dc.references | Godishala V, Mangamoori L, Nanna R (2011) Plant regeneration via somatic embryogenesis in cultivated tomato (Solanum lycopersicum L.). J Cell Tissue Res 1:2521–2528 | pl_PL |
dc.references | Goel D, Singh AK, Yadav V, Babbar SB, Murata N, Bansal KC (2011) Transformation of tomato with a bacterial coda gene enhances tolerance to salt and water stresses. J Plant Physiol 11:1286–1294. doi:10.1016/j.jplph.2011.01.010 | pl_PL |
dc.references | Goetz M, Hooper LC, Johnson SD, Rodrigues JC, Vivian-Smith A, Koltunov AM (2007) Expression of aberrant forms of auxin response factor 8 stimulates parthenocarpy in Arabidopsis and tomato. Plant Physiol 2:336–351. doi:10.1104/pp.107.104174 | pl_PL |
dc.references | Guan ZJ, Guo B, Huo YL, Dai JK, Wei YH (2012) Histocytological examination on organogenesis and somatic embryogenesis of HBsAg-transgenic cherry tomato mutant. Int J Exp Bot 81:51–58 | pl_PL |
dc.references | Guo M, Zhang YL, Meng ZJ, Jiang J (2012) Optimization of factors affecting Agrobacterium-mediated transformation of Micro-Tom tomatoes. Genet Mol Res 1:661–671. doi:10.4238/2012 | pl_PL |
dc.references | Hanus-Fajerska E (2006) Variation in tomato plants regenerated from Cucumber Mosaic Viruse infected tissue. ISHS Acta Hort789: XV Meeting of the EUCARPIA Tomato Working Group. http:// www.actahort.org/books/789/789_40.htm | pl_PL |
dc.references | Harish MC, Rajeevkumar S, Sathishkumar R (2010) Efficient in vitro callus induction and regeneration of different tomato cultivars of India. Asian J Biotechnol 3:178–184. doi:10.3923/ajbkr.2010. 178.184 | pl_PL |
dc.references | Hasan M, Khan AJ, Khan S, Shah AH, Khan AR, Mirza B (2008) Transformation of tomato (Lycopesricon esculentum Mill.) with Arabidopsis early flowering gene APETALI (API) Through Agrobacterium infiltration of ripened fruits. Pak J Bot 1:161–173 | pl_PL |
dc.references | Herbette S, Tourvielle de Labrouheb D, Drevetc JR, Roeckel-Dreveta P (2011) Transgenic tomatoes showing higher glutathione peroxydase antioxidant activityare more resistant to an abiotic stress but more susceptible to biotic stresses. Plant Sci 180:548–553. doi:10.1016/j.plantsci.2010.12.002 | pl_PL |
dc.references | Hirai T, Fukukawa G, Kakuta H, Fukuda N, Ezura H (2010) Production of recombinant miraculin using transgenic tomatoes in a closed cultivation system. J Agric Food Chem 58:6096–6101. doi:10.1021/jf100414v | pl_PL |
dc.references | Horvath DM, Stall RE, Jones JB, Pauly MH, Vallad GV, Dahlbeck D, Staskawicz BJ, Scott JW (2012) Transgenic resistance confers effective field level control of bacterial spot disease in tomato. PLoS ONE 7(8):e42036. doi:10.1371/journal.pone.0042036 | pl_PL |
dc.references | Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, Chan MT (2002) Heterology expression of the Arabidopsis C-Repeat/ Dehydration Response Element Binding Factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129:1086–1094 | pl_PL |
dc.references | Hsieh TH, Li CW, Su RC, Cheng CP, Tsai YC, Chan MT (2010) A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response. Planta 231:1459–1473. doi:10. 1007/s00425-010-1147-4 | pl_PL |
dc.references | Hu DG, Wang SH, Luo H, Ma QJ, Yao YX, You CX, Hao YJ (2012) Overexpression of MdVHA-B, V-ATPase gene from apple, confers tolerance to drought in transgenic tomato. Sci Hortic 145:94–101. doi:10.1016/j.scienta.2012.08.010 | pl_PL |
dc.references | Iijima Y, Gang DR, Fridman E, Lewinson E, Pichersky E (2004) Characterization of geraniol synthase from the peltate glands of sweet basil. Plant Physiol 134:370–379. doi:10.1104/pp.103. 032946 | pl_PL |
dc.references | Ishag S, Osman MG, Khalafalla MM (2009) Effects of growth regulators and genotype on shoot regeneration in tomato (Lycopresicon esculentum c.v. Omdurman). Int J Sustain Crop Prod 6:7–13 | pl_PL |
dc.references | Jabeen N, Mirza B, Chaudhary Z, Rashid H, Gulfraz M (2009) Study of the factors affecting Agrobacterium mediated gene transformation in tomato (Lycopersicon esculentum Mill.) cv. Riogrande using rice chitinase (CHT-3) gene. Pak J Bot 5:2605–2614 | pl_PL |
dc.references | Jaberolansar N, Hayati J, Rajabi-Memari H, Hosseini-Tafreshi SA, Nabati-Ahmadi D (2010) Tomato and tobacco phytoene desaturase gene silencing by virus-induced gene silencing (VIGS) technique. Iran J Virol 1:7–11 | pl_PL |
dc.references | Jehan S, Hassanein AM (2013) Hormonal requirements trigger different organogenic pathways on tomato nodal explants. Am J Plant Sci 4:2118–2125. doi:10.4236/ajps.2013.411263 | pl_PL |
dc.references | Jua´rez P, Presa S, Espı´ J, Pineda B, Anto´n MT, Moreno V, Buesa J, Granell A, Orzaez D (2012) Neutralizing antibodies against rotavirus produced in transgenically labelled purple tomatoes. Plant Biotechnol J 3:341–352. doi:10.1111/j.1467-7652.2011. 00666.x | pl_PL |
dc.references | Jung YJ (2013) Enhanced resistance to bacterial pathogen in transgenic tomato plants expressing cathelicidin antimicrobial peptide. Biotechnol Bioprocess Eng 18:615–624. doi:10.1007/ s12257-013-0392-3 | pl_PL |
dc.references | Kantor M, Sestras R, Chowudhury K (2010) Identification of the most organogenic-responsive variety of tomato using the variety X medium interaction. Rom Biotechnol Lett 5:5640–5645 | pl_PL |
dc.references | Kantor M, Sestras R, Chowdhury K (2013) Transgenic tomato plants expressing the antigen gene PfCP-2.9 of Plasmodium falciparum. Pesquisa Agropecua´ria Brasileira 1:73–79. doi:10.1590/ S0100-204X2013000100010 | pl_PL |
dc.references | Kato K, Maruyama S, Hirai T, Hiwasa-Tanase K, Mizoguchi T, Goto E, Ezura H (2011) A trial of production of the plant-derived high-value protein in a plant factory. Photosynthetic photon fluxes affect the accumulationof recombinant miraculin in transgenic tomato fruits. Plant Signal Behav 8:1172–1179. doi:10.4161/psb.6.8.16373 | pl_PL |
dc.references | Khare N, Goyary D, Singh NK, Shah P, Rathore M, Anandhan S, Sharma D, Arif M, Ahmed Z (2010) Transgenic tomato cv. Pusa Uphar expressing a bacterial mannitol-1-phosphate dehydrogenase gene confers abiotic stress tolerance. Plant Cell Tissue Organ Cult 103:267–277. doi:10.1007/s11240-010-9776-7 | pl_PL |
dc.references | Khoudi H, Nouri-Khemakhem A, Gouiaa S, Masmoudi K (2009) Optimization of regeneration and transformation parameters in tomato and improvement of its salinity and drought tolerance. Afr J Biotechnol 22:6068–6076. doi:10.5897/AJB09.057 | pl_PL |
dc.references | Khuong TTH, Cre´te´ P, Robaglia C, Caffarri S (2013) Optimisation of tomato Micro-tom regeneration and selection on glufosine/Basta and dependency of gene silencing on transgene copy number. Plant Cell Rep 32:1441–1454. doi:10.1007/s00299-013-1456-8 | pl_PL |
dc.references | Kim HS, Youma JW, Moona KB, Ha JH, Kim YH, Joung H, Jeon JH (2012) Expression analysis of human b-secretase in transgenic tomato fruits. Protein Expr Purif 82:125–131. doi:10.1016/j.pep. 2011.11.012 | pl_PL |
dc.references | Kobayashi M, Nagasaki H, Garcia V, Just D, Bres C, Mauxion JP, Paslier MCL, Brunel D, Suda K, Minakuchi Y, Toyoda A, Fujiyama A, Toyoshima H, Suzuki T, Igarashi K, Rothan C, Kaminuma E, Nakamura Y, Yano K, Aoki K (2013) Genomewide analysis of intraspecific DNA polymorphism in ‘Micro- Tom’, a model cultivar of tomato (Solanum lycopersicum). Plant Cell Physiol 2:445–454. doi:10.1093/pcp/pct181 | pl_PL |
dc.references | Koenig D, Jimenez-Gomez JM, Kimura S, Fulop D, Chitwood DH, Hedland LR, Kumar R, Covington MF, Devisetty UK, Tat AV, Toghe T, Bolger A, Schneeberger K, Ossowski S, Lanz Ch, Xiong G, Taylor-Teeples M, Rady SM, Pauly M, Weigel D, Usadel B, Fernie AF, Peng J, Sinnha NR, Maloof JN (2013) Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proc Natl Acad Sci USA 28:E2655–E2662. doi:10.1073/pnas.1309606110 | pl_PL |
dc.references | Koleva Gudeva L, Dedejski G (2012) In vivo and in vitro production of some genotypes of cherry tomato Solanum lycopersicum var. Cerasiforme (DUNAL). Int J Farm Allied Sci 4: 91–96. URL: http://ijfas.com/2012-1-4/ | pl_PL |
dc.references | Koul B, Sirivastava S, VijayAmla D, Sanyal I (2014) Establishment and optimization of Agrobacterium-mediated transformation and regeneration of tomato (Solanum lycopersicum L.) Int. J Biosci 10:51–69. doi:10.12692/ijb/4.10.51-69 | pl_PL |
dc.references | Kurokawa N, Hirai T, Takayama M, Hiwasa-Tanase K, Ezura H (2013) An E8 promoter–HSP terminator cassette promotes the high-level accumulation of recombinant protein predominantly in transgenic tomato fruits: a case study of miraculin. Plant Cell Rep 32:529–536. doi:10.1007/s00299-013-1384-7 | pl_PL |
dc.references | Lai L, Huang T, Wang Y, Liu Y, Zhang J, Song Y (2009) The expression of analgesic-antitumor peptide (AGAP) from Chinese Buthus martensii Karsch in transgenic tobacco and tomato. Mol Biol Rep 36:1033–1039. doi:10.1007/s11033-008-9277-5 | pl_PL |
dc.references | Lee TJ, Coyne DP, Clemente TE, Mitra A (2002) Partial resistance to bacterial wilt in transgenic tomato plants expressing antibacterial lactoferrin gene. J Am Soc Hortic Sci 2:150–164 | pl_PL |
dc.references | Li T, Sun JK, Lu ZH, Liu Q (2011) Transformation of HBsAg (Hepatitis B Surface Antigen) gene into tomato mediated by Agrobacterium tumefaciens. Czech J Genet Plant Breed 2:69–77 | pl_PL |
dc.references | Li C, Yan JM, Li YZ, Zhang ZC, Wang QL, Liang Y (2013) Silencing the SpMPK1, SpMPK2, and SpMPK3 genes in tomato reduces abscisic acid—mediated drought tolerance. Int J Mol Sci 14:21983–21996. doi:10.3390/ijms141121983 | pl_PL |
dc.references | Liu J, Cong B, Tanksley SD (2003) Generation and analysis of an artificial gene dosage series in tomato to study the mechanism by which the cloned quantitative trait locus fw2.2 controls fruit size. Plant Physiol 1:292–299. doi:10.1104/pp.102.018143 | pl_PL |
dc.references | Liu Y, Roof S, Ye Z, Barry C, van Tuinen A, Vrebalov J, Bowler C, Giovannoni J (2004) Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proc Natl Acad Sci USA 26:9897–9902. doi:10.1073/pnas.0400935101 | pl_PL |
dc.references | Lou XM, Yao QH, Zhang Z, Peng RH, Xiong AS, Wang HK (2007) Expression of the human hepatitis B virus large surface antigen gene in transgenic tomato plants. Clin Vaccine Immunol 4:464–469. doi:10.1128/CVI.00321-06 | pl_PL |
dc.references | Lozano R, Gimenez E, Cara B, Capel J, Angosto T (2009) Genetic analysis of reproductive development in tomato. Int J Dev Biol 53:1635–1648. doi:10.1387/ijdb.072440rl | pl_PL |
dc.references | Ma H, Song C, Borth W, Sether D, Melzer M, Hu J (2011) Modified expression of alternative oxidase in transgenic tomato and petunia affects the level of tomato spotted wilt virus resistance. BMC Biotechnol 11:96. doi:10.1186/1472-6750-11-96 | pl_PL |
dc.references | Maligeppagol M, Chandra GS, Prakash M, Navale PM, Deepa H, Rajeev PR, Asokan R, Babu KP, Babu CCB, Rao VK, Kumar KNK (2013) Anthocyanin enrichment of tomato (Solanum lycopersicum L.) fruit by metabolic engineering. Curr Sci 1:72–80 | pl_PL |
dc.references | Mamidala P, Nanna RS (2011) Effect of genotype, explants source and medium on in vitro regeneration of tomato. Int J Genet Mol Biol 3:45–50 | pl_PL |
dc.references | Marti E, Gisbert C, Bishop GJ, Dixon MS, Garcia-Martinez JL (2006) Genetic and physiological characterization of tomato cv. Micro- Tom. J Exp Bot 9:2037–2047. doi:10.1093/jxb/erj154 | pl_PL |
dc.references | Mathieu S, Dal Cin V, Fei Z, Li H, Bliss P, Taylor MG, Klee HJ, Tieman DM (2009) Flavour compounds in tomato fruits: identification of loci and potential pathways affecting volatile composition. J Exp Bot 1:325–337. doi:10.1093/jxb/ern294 | pl_PL |
dc.references | McCormick S, Niedermeyer J, Fry J, Barnason A, Horsch R, Fraley R (1986) Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep 2:81–84 | pl_PL |
dc.references | Mensuali-Sodi A, Panizza M, Tognoni F (1995) Endogenous ethylene requirement for adventitious root induction and growth in tomato cotyledons and lavandin microcuttings in vitro. Plant Growth Regul 17:205–212. doi:10.1007/BF00024727 | pl_PL |
dc.references | Minoia S, Petrozza A, D’Onofrio O, Piron F, Mosca G, Sozio G, Cellini F, Bendahmane A, Carriero F (2010) A new mutant genetic resource for tomato crop improvement by TILLING technology. BMC Res Notes 3:69–76. doi:10.1186/1756-0500-3- 69 | pl_PL |
dc.references | Mishra KB, Iannacone R, Petrozza A, Mishra A, Armentano N, La Vecchia G, Trtilek M, Cellini F, Nedbal L (2012) Engneering drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission. Plant Sci 182:79–86. doi:10.1016/j. phytochem.2012.09.007 | pl_PL |
dc.references | Morgan MJ, Osorio S, Gehl B, Baxter CJ, Kruger NJ, Ratcliffe RG, Fernie AR, Sweetlove LJ (2013) Metabolic engineering of tomato fruit organic acid content guided by biochemical analysis of an introgression line. Plant Physiol 1:397–407. doi:10.1104/ pp.112.209619 | pl_PL |
dc.references | Muir SR, Collins GJ, Robinson S, Hughes SG, Bovy AG, de Vos CH, van Tunen AJ, Verhoyen ME (2001) Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat Biotechnol 5:470–474. doi:10.1038/88150 | pl_PL |
dc.references | Mun˜oz-Mayor A, Pineda B, Garcia-Abella´n JO, Anto´n T, Garcia- Sogo B, Sanchez-Bel P, Flores FB, Atare´s A, Angosto T, Pintor- Toro JA, Moreno V, Bolarin MC (2012) Overexpression of dehydrin tas14 gene improves the osmotic stress imposed by drought and salinity in tomato. J Plant Physiol 169:459–468. doi:10.1016/j.jplph.2011.11.018 | pl_PL |
dc.references | Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x | pl_PL |
dc.references | Namitha KK, Negi P (2013) Morphogenetic potential of tomato (Lycopersicon esculentum,) cv. Arka Ahuti to plant growth regulators. Notulae Scientia Biologicae 2:220–225 | pl_PL |
dc.references | Neily MH, Matsukura Ch, Maucourt M, Bernillon S, Deborde C, Moing A, Yin YG, Saito T, Mori K, Asamizua E, Rolin D, Moriguchi T, Ezura H (2011) Enhanced polyamine accumulation alters carotenoid metabolism at the transcriptional level in tomato fruit over-expressing spermidine synthase. J Plant Physiol 168:242–252. doi:10.1016/j.jplph.2010.07.003 | pl_PL |
dc.references | Orzaez D, Granell A (2009) Reverse genetics and transient gene expression in fleshy fruits. Plant Signal Behav 9:864–867. doi:10.1104/pp.109.13900 | pl_PL |
dc.references | Orzaez D, Mirabel S, Wieland WH, Granell A (2006) Agroinjection of tomato fruits. A tool for rapid functional analysis of transgenes directly in fruit. Plant Physiol 1:3–11. doi:10.1104/ pp.105.068221 | pl_PL |
dc.references | Orzaez D, Medina A, Torre S, Fernandez-Moreno JP, Rambla JL, Fernandez-del-Carmen A, Butelli E, Martin C, Granell A (2009) A visual reporter system for virus-induced gene silencing in tomato fruit based on anthocyanin accumulation. Plant Physiol 3:1122–1134. doi:10.1104/pp.109.139006 | pl_PL |
dc.references | Paduchuri P, Gohokar S, Thamke B, Subhas M (2010) Transgenic tomatoes. Int J Adv Biotechnol Res 2:69–72. http://www. bipublication.com | pl_PL |
dc.references | Pandey SK, Nookaraju A, Upadhayaya CP, Gururani MA, Venkatesh J, Kim DH, Park SW (2011) An update biotechnological approaches for improving abiotic tolerance stress in tomato. Crop Sci 51:1–22. doi:10.2135/cropsci2010.10.0579 | pl_PL |
dc.references | Park S, Jinsheng L, Pittman JK, Berkowitz GA, Yang H, Undurraga S, Morris J, Hirsch KD, Gaxiola RA (2005) Up-regulation of H?-pyrophosphatase (H?-PPase) as a strategy to engineer drought-resistant crop plants. Proc Natl Acad Sci USA 52:18830–18835. doi:10.1073/pnas.0509512102 | pl_PL |
dc.references | Patade VY, Khatri D, Kumari M, Grover A, Gupta SM, Ahmed Z (2013) Cold tolerance in Osmotin transgenic tomato (Solanum lycopersicum L.) is associated with modulation in transcript abundance of stress responsive genes. SpringerPlus 2:117. doi:10.1186/2193-1801-2-117 | pl_PL |
dc.references | Perlata IE, Spooner DM (2007) History, origin and early cultivation of tomato (Solanaceae). In: Rozdan MK, Matto AK (eds) Genetic improvement of solanaceous crops: tomato, vol 2. Science Publishers, Enfield, NH, pp 1–27 | pl_PL |
dc.references | Plana D, Fuentes A, Alvarez M, Lara RM, Alvarez F, Pujol M (2006) A new approach for in vitro regeneration of tomato plants devoid of exogenous plant growth hormones. Biotechnol J 1:1153–1157. doi:10.1002/biot.200500042 | pl_PL |
dc.references | Rai AC, Singh M, Shah K (2013) Engineering drought tolerant tomato plants over-expressing BcZAT12 gene encoding a C2H2 zinc finger transcription factor. Phytochemistry 85:44–50. doi:10. 1016/j.phytochem.2012.09.007 | pl_PL |
dc.references | Raiola A, Rigano MM, Calafiore R, Frusciante L, Barone A (2014). Enhancing the human-promoting effects of tomato fruit for bofortified food. Hindawi Publishing Corporation Mediators of Inflammation. doi:10.1155/2014/139873 | pl_PL |
dc.references | Ramirez YJP, Tasciotti E, Gutierrez-Ortega A, Donayre Torres AJ, Olivera Flores MT, Giacca M, Gomez Lim MA (2007) Fruitspecific expression of the human immunodeficiency virus type 1 tat gene in tomato plants and its immunogenic potential in mice. Clin Vaccine Immunol 6:685–692. doi:10.1128/CVI.00028-07 | pl_PL |
dc.references | Rashid R, Bal SS (2010) Effect of hormones on direct shoot regeneration in hypocotyl explants of tomato. Notulae Scientia Biologicae 1:70–73 | pl_PL |
dc.references | Rashid R, Bal SS (2011) Agrobacterium -mediated genetic transformation of tomato (Solanum lycopesricum L) with Cry1Ac gene for resistance against fruit borer. J Trop Agric 49(1–2):110–113 | pl_PL |
dc.references | Romero I, Tikunov Y, Bovy A (2011) Virus-induced gene silencing in detached tomatoes and biochemical effects of phytoene desaturase gene silencing. J Plant Physiol 168:1129–1135. doi:10. 1016/j.jplph.2010.12.020 | pl_PL |
dc.references | Ruf S, Hermann M, Berger IJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 9:870–875. doi:10.1038/nbt0901- 870 | pl_PL |
dc.references | Saito T, Ariizumi T, Okabe Y, Asamizu E, Hiwasa-Tanase K, Fukuda N, Mizoguchi T, Yamazaki Y, Aoki K, Ezura H (2011) TOMATOMA: a novel tomato mutant database distributing Micro-Tom mutant collections. Plant Cell Physiol 2:283–296. doi:10.1093/pcp/pcr004 | pl_PL |
dc.references | Saker MM, Hussein HA, Osman NH, Soliman MH (2008) In vitro production of transgenic tomatoes expressing defensin gene using newly developed regeneration and transformation system. Arab J Biotechnol 1:59–70 | pl_PL |
dc.references | Saker MM, Salama HS, Salama M, El-Banna A, AbdelGhany NM (2011) Production of transgenic tomato plants expressing Cry 2Ab gene for the control of some lepidopterous insects endemic in Egypt. J Genet Eng Biotechnol 9:149–155. doi:10.1016/j.jgeb. 2011.08.001 | pl_PL |
dc.references | Schijlen E, de Vos CHR, Jonker H, van den Broeck H, Molthoff J, van Tunen A, Martens S, Bovy A (2006) Pathway engineering for healthy phytochemicals leading to the production of novel flavonoids in tomato fruit. Plant Biotechnol J 4:433–444. doi:10. 1111/j.1467-7652.2006.00192.x | pl_PL |
dc.references | Schreiber G, Reuveni M, Evenor D, Oren-Shamir M, Ovadia R, Sapir-Mir M, Bootbool-Man A, Nahon S, Shlomo H, Chen L, Levin I (2012) ANTHOCYANIN1 from Solanum chilense is more efficient in accumulating anthocyanin metabolites than its Solanum lycopersicum counterpart in association with the ANTHOCYANIN FRUIT phenotype of tomato. Theor Appl Genet 124:295–307. doi:10.1007/s00122-011-1705-6 | pl_PL |
dc.references | Shah MR, Mukherjee PK, Eapen S (2010) Expression of a fungal endochitinase gene in transgenic tomato and tobacco results in enhanced tolerance to fungal pathogens. Physiol Mol Biol Plants 1:39–51. doi:10.1007/s12298-010-0006-x | pl_PL |
dc.references | Sharma MK, Solanke AU, Jani D, Singh Y, Sharma AK (2009) A simple and efficient Agrobacterium-mediated procedure for transformation of tomato. J Biosci 3:423–433 | pl_PL |
dc.references | Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26. doi:10. 1155/2012/217037 | pl_PL |
dc.references | Sherkar HD, Chavan AM (2014) Studies on callus induction and shoot regeneration in tomato. Sci Res Rep 1:89–93 | pl_PL |
dc.references | Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227. doi:10.1093/jxb/erl164 | pl_PL |
dc.references | Simkin AJ, Gaffe J, Alcaraz JP, Carde JP, Bramley PM, Fraser PD, Kuntz M (2007) Fibrillin influence on plastid ultrastructure and pigment content in tomato fruit. Phytochemistry 68:1545–1556. doi:10.1016/j.phytochem.2007.03.014 | pl_PL |
dc.references | Singh S, Rathore M, Goyar D, Singh RK, Anandhan S, Sharma DK, Ahmed Z (2011) Induced ectopic expression of At-CBF1 in marker-free transgenic tomatoes confers enhanced chilling tolerance. Plant Cell Rep 30:1019–1028. doi:10.1007/s00299- 011-1007-0 | pl_PL |
dc.references | Smith DL, Abbott AA, Gross KC (2002) Down-regulation of tomato b-galactosidase 4 results in decreased fruit softening. Plant Physiol 4:1755–1762. doi:10.1104/pp.011025 | pl_PL |
dc.references | Soria-Guerra RE, Rosales-Mendoza S, Marquez-Mercado C, Lopez- Revilla R, Castillo-Collazo R, Alpuche-Solıs AG (2007) Transgenic tomatoes express an antigenic polypeptide containing epitopes of the diphtheria, pertussis and tetanus exotoxins, encoded by a synthetic gene. Plant Cell Rep 26:961–968. doi:10. 1007/s00299-007-0306-y | pl_PL |
dc.references | Soria-Guerra RE, Rosales-Mendoza S, Moreno-Fierros L, Lopez- Revilla R, Alpuche-Solıs AG (2011) Oral immunogenicity of tomato-derived sDPT polypeptide containing Corynebacterium diphtheriae, Bordetella pertussis and Clostridium tetani exotoxin epitopes. Plant Cell Rep 30:417–424. doi:10.1007/s00299-010- 0973-y | pl_PL |
dc.references | Spolaroe S, Trainotti L, Casadoro G (2001) A simple protocol for transient gene expression in ripe fleshy fruit mediated by Agrobacterium. J Exp Bot 357:845–850. doi:10.1093/jexbot/52. 357.845 | pl_PL |
dc.references | The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641. doi:10.1038/nature11119 | pl_PL |
dc.references | Tieman DM, Zeigler M, Schmelz EA, Taylor MG, Bliss P, Kirst M, Klee HJ (2006) Identification of loci affecting flavour volatile emissions in tomato fruits. J Exp Bot 4:887–896. doi:10.1093/ jxb/erj074 | pl_PL |
dc.references | Tyburski J, Tretyn A (1999) Organogenetic response of photomorphogenic mutants of tomato. J Plant Physiol 155:568–575. doi:10. 1016/S0176-1617(99)80056-X | pl_PL |
dc.references | Velcheva M, Faltin Z, Flaishman M, Eshdat Y, Perl A (2005) A liquid culture system for Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum L. Mill.). Plant Sci 168:121–130. doi:10.1016/j.plantsci.2004.07.037 | pl_PL |
dc.references | Vu T, Choudhury NR, Mukherjee SK (2013) Transgenic tomato plants expressing artificial microRNAs for silencing the pre-coat and coat proteins of a begomovirus, Tomato leaf curl New Delhi virus, show tolerance to virus infection. Virus Res 172:35–45. doi:10.1016/j.virusres.2012.12.008 | pl_PL |
dc.references | Waller JC, Akhtar TA, Lara-Nunez A, Gregory JF, McQuinn RP, Giovannoni JJ, Hanson AD (2010) Developmental and feedforward control of the expression of folate biosynthesis genes in tomato fruit. Mol Plant 1:66–77. doi:10.1093/mp/ssp057 | pl_PL |
dc.references | Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, Chaabouni S, Latche A, Pech JC, Bouzayen M (2005) The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell 10:2676–2692. doi:10.1105/tpc. 105.033415 | pl_PL |
dc.references | Wang Y, Wisniewski M, Meilan R, Cui M, Fuchigami L (2006) Transgenic tomato (Lycopersicon esculentum) overexpressing cAPX exhibits enhanced tolerance to UV-B and heat stress. J Appl Hortic 2:87–90 | pl_PL |
dc.references | Wang S, Liu J, Feng Y, Niu X, Giovannoni J, Liu Y (2008) Altered plastid levels and potential for improved fruit nutrient content by downregulation of the tomato DDB1-interacting protein CUL4. Plant J 55:89–103. doi:10.1111/j.1365-313X.2008.03489.x | pl_PL |
dc.references | Wang BQ, Zhang QF, Liu JH, Li GH (2011) Overexpression of PtADC confers enhanced dehydratation and drought tolerance in transgenic tobacco and tomato: effect on ROS elimination. Biochem Biophys Res Commun 413:10–16. doi:10.1016/j.bbrc. 2011.08.015 | pl_PL |
dc.references | Wayase UR, Shitole MG (2014) Effect of plant growth regulators on organogenesis in tomato (Lycopersicon esculentum Mill.) cv. Dhanashri. Int J Pure Appl Sci Technol 2:65–71 | pl_PL |
dc.references | Wiktorek-Smagur A, Hnatuszko-Konka K, Gerszberg A, Kowalczyk T, Łuchniak P, Kononowicz AK, (2012) Green way of biomedicine— how to force plants to produce new important proteins. In: Yelda Ozden C¸ iftc¸i (ed) Transgenic Plants - Advances and Limitations, PhD. ISBN: 978-953-51-0181-9, InTech, doi: 10. 5772/31145 | pl_PL |
dc.references | Wro´blewski T, Tomczak A, Michelmore R (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato, Arabidopsis. Plant Biotechnol J 2:259–273. doi:10.1111/j.1467-7652.2005.00123.x | pl_PL |
dc.references | Wu Z, Sun S, Wang F, Guo D (2011) Establishment of regeneration and transformation system of Lycopresicon esculentum Micro tom. Br Biotechnol J 3:53–60. www.sciencedomain.org/down load.php?f=1311487212-Guo.pdf | pl_PL |
dc.references | Wurbs D, Ruf S, Bock R (2007) Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant J 49:276–288. doi:10.1111/j.1365- 313X.2006.02960.x | pl_PL |
dc.references | Yanez M, Caceres S, Orellana S, Bastias A, Verdugo I, Luiz-Lara S, Casaretto JA (2009) An abiotic stress-responsive bZIP transcription factor from wild and cultivated tomatoes regulates stress-related genes. Plant Cell Rep 10:1497–507. doi:10.1007/ s00299-009-0749-4 | pl_PL |
dc.references | Yang L, Shen H, Pan A, Chen J, Huang C, Zhang D (2005) Screening and construct-specific detection methods of transgenic Hufan No 1 tomato by conventional and real-time PCR. J Sci Food Agric 85:2159–2166. doi:10.1002/jsfa.2193 | pl_PL |
dc.references | Yang S, Vanderbeld Wan J, Huang Y (2010) Narrowing down the targets: towards successful genetic engineering of droughttolerant crop. Mol Plant 3:469–490. doi:10.1093/mp/ssq016 | pl_PL |
dc.references | Yarra R, He SJ, Abbagani S, Ma B, Bulle M, Zhang WK (2012) Overexpression of wheat Na?/H? antiporter gene (TaNHX2) enhances tolerance to salt stress in transgenic tomato plants (Solanum lycopersicum L.). Plant Cell Tissue Organ Cult 111:49–57. doi:10.1007/s11240-012-0169-y | pl_PL |
dc.references | Yasmeen A (2009) An improved protocol for the regeneration and transformation of tomato (cv. Rio Grande). Acta Physiol Plant 31:1271–1277 | pl_PL |
dc.references | Yasmeen A, Mirza B, Inayatullah S, Safdar N, Jamil M, Ali S, Choudry MF (2009) In planta transformation of tomato. Plant Mol Biol Rep 27:20–28. doi:10.1007/s11105-008-0044-5 | pl_PL |
dc.references | Youm JW, Jeon JH, Kim H, Kim YHK, Ko K, Joung H, Kim HS (2008) Transgenic tomatoes expressing human beta-amyloid for use as a vaccine against Alzheimer’s disease. Biotechnol Lett 30:1839–1845. doi:10.1007/s10529-008-9759-5 | pl_PL |
dc.references | Zanor MI, Osorio S, Nunes-Nesi A, Carrari F, Lohse M, Usadel B, Kuhn C, Bleiss W, Giavalisco P, Willmitzer L, Sulpice R, Zhou YH, Fernie AR (2009) RNA interference of LIN5 in tomato confirms its role in controlling Brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility. Plant Physiol 3:1204–1218. doi:10.1104/pp.109.136598 | pl_PL |
dc.references | Zhang H, Zhao L, Chen Y, Cui L, Ren W, Tang K (2007) Expression of human coagulation Factor IX in transgenic tomato (Lycopersicon esculentum). Biotechnol Appl Biochem 48:101–107. doi:10.1042/BA20060224 | pl_PL |
dc.references | Zhang C, Liu J, Zhang Y, Cai X, Gong P, Zhang J, Wang T, Li H, Ye Z (2011) Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Rep 30:389–398. doi:10.1007/s00299-010- 0939-0 | pl_PL |
dc.references | Zhang W, Hou L, Zhao H, Li M (2012) Factors affecting regeneration of tomato cotyledons. Biosci Methods 4:27–33 | pl_PL |
dc.references | Zhou F, Badillo-Corona JA, Karcher D, Gonzalez-Rabade N, Piepenburg K, Borchers AM, Maloney AP, Kavanagh TA, Gray JC, Bock R (2008) High-level expression of human immunodeficiency virus antigens from the tobacco and tomato plastid genomes. Plant Biotechnol J 9:897–913. doi:10.1111/j.1467- 7652.2008.00356.x | pl_PL |
dc.references | Zhou T, Zhang H, Lai T, Qin C, Shi N, Wang H, Jin M, Zhong S, Fan Z, Liu Y, Wu Z, Jackson S, Giovannoni JJ, Rolin D, Gallusci P, Hong Y (2012) Virus-induced gene complementation reveals a transcription factor network in modulation of tomato fruit ripening. Sci Rep 2:836. doi:10.1038/srep00836 | pl_PL |
dc.contributor.authorEmail | University of Lodz, Department of Genetics, Plant Molecular Biology and Biotechnology | pl_PL |