Show simple item record

dc.contributor.authorGerszberg, Aneta
dc.contributor.authorHnatuszko-Konka, Katarzyna
dc.contributor.authorKowalczyk, Tomasz
dc.contributor.authorKononowicz, Andrzej K.
dc.date.accessioned2015-04-28T11:46:17Z
dc.date.available2015-04-28T11:46:17Z
dc.date.issued2014-11-30
dc.identifier.issn1573-5044
dc.identifier.urihttp://hdl.handle.net/11089/8327
dc.description.abstractOriginating in the Andes, the tomato (Solanum lycopersicum L.) was imported to Europe in the 16th century. At present, it is an important crop plant cultivated all over the world, and its production and consumption continue to increase. This popular vegetable is known as a major source of important nutrients including lycopene, bcarotene, flavonoids and vitamin C as well as hydroxycinnamic acid derivatives. Since the discovery that lycopene has anti-oxidative, anti-cancer properties, interest in tomatoes has grown rapidly. The development of genetic engineering tools and plant biotechnology has opened great opportunities for engineering tomato plants. This review presents examples of successful tissue culture and genetically modified tomatoes which resistance to a range of environmental stresses improved, along with fruit quality. Additionally, a successful molecular farming model was established.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringer Netherlandspl_PL
dc.relation.ispartofseriesPlant Cell, Tissue and Organ Culture;(2015) 120
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.subjectTomatopl_PL
dc.subjectTissue culturepl_PL
dc.subjectTransformationpl_PL
dc.subjectMolecular farmingpl_PL
dc.titleTomato (Solanum lycopersicum L.) in the service of biotechnologypl_PL
dc.typeArticlepl_PL
dc.page.number881–902pl_PL
dc.contributor.authorAffiliationUniversity of Lodz, Department of Genetics, Plant Molecular Biology and Biotechnologypl_PL
dc.referencesAdato A, Mandel T, Mintz-Oron S, Venger I, Levy D, Yativ M, Domınguez E, Wang Z, De Vos RC, Jetter R, Schreiber L, Heredia A, Rogachev I, Aharoni A (2009) Fruit-surface flavonoid accumulation in tomato is controlled by a SlMYB12- regulated transcriptional network. PLoS Genet 512:e1000777. doi:10.1371/journal.pgen.1000777pl_PL
dc.referencesAfroz A, Chaudry Z, Rashid U, Khan MR, Ghulam MA (2010) Enhanced regeneration in explants of tomato (Lycopersicon esculentum L.) with the treatment of coconut water. Afr J Biotechnol 24:3634–3644. doi:10.5897/AJB2010.000-3228pl_PL
dc.referencesAjenifujah-Solebo SOA, Isu NA, Olorode O, Ingelbrecht I, Abiade OO (2012) Tissue culture regeneration of three Nigerian cultivars of tomatoes. Afr J Plant Sci 14:370–375. doi:10.5539/ sar.v2n3p58pl_PL
dc.referencesAlc´azar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249. doi:10.10007/s00425-010-1130-0pl_PL
dc.referencesAli AA, Yossef TR, El-Banna A (2012) Cytokinin-cytokinin interaction ameliorates the callus induction and plant regeneration of tomato (Solanum lycopersicon Mill.). Acta Agron Hung 1:47–55. doi:10.1556/AAgr.60.2012.1.6pl_PL
dc.referencesAlvarez ML, Cardineau GA (2010) Prevention of bubonic and pneumonic plague using plant-derived vaccines. Biotechnol Adv 28:184–196. doi:10.1016/j.biotechadv.2009.11.006pl_PL
dc.referencesAlvarez ML, Pinyerd HL, Crisantes JD, Rigano MM, Pinkhasov J, Walmsley AM, Mason HS, Cardineau GA (2006) Plant-made subunit vaccine against pneumonic and bubonic plague is orally immunogenic in mice. Vaccine 24:2477–2490. doi:10.1016/j. vaccine.2005.12.057pl_PL
dc.references´ lvarez-Viveros MF, Inostroza-Blancheteau C, Timmermann T, Gonza´lez M, Arce-Johnson P (2013) Overexpression of GlyI and GlyII genes in transgenic tomato (Solanum lycopersicum Mill.) plants confers salt tolerance by decreasing oxidative stress. Mol Biol Rep 4:3281–3290. doi:10.1007/s11033-012- 2403-4pl_PL
dc.referencesApel W, Bock R (2009) Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion. Plant Physiol 1:59–66. doi:10.1104/pp.109.140533pl_PL
dc.referencesAshakiran K, Sivankalyani V, Jayanthi M, Govindasamy V, Girija S (2011) Genotype specific shoots regeneration form different explants of tomato (Solanum lycopersicum L.) using TDZ. Asian J Plant Sci Res 2:107–113pl_PL
dc.referencesBaesi M, Nabati Ahmadi D, Rajabi-Memari H, Siahpoosh MR, Abdollahi MR, Jaberolansar N (2011) Cloning and transformation of hepatitis B surface antigen (HBsAg) gene to tomato (Lycopersicon esculentum Mill.). Jundishapur J Nat Pharm Prod 1:32–41pl_PL
dc.referencesBahurpe JV, Patil SC, Pawar BD, Chimote VP, Kale AA (2013) Callus induction and plantlet regeneration in tomato (Solanum lycopersicum L.). J Cell Tissue Res 2:3765–3768pl_PL
dc.referencesBai Y, Lindhout P (2007) Domestication and breeding of tomatoes: what have we gained and what can we gain in the future? Ann Bot 100:1085–1094. doi:10.1093/aob/mcm150pl_PL
dc.referencesBailey LB (2010) Folate in health and disease, second edition. CRC Press Taylor & Francis group 6000 Broken Sound Parkway NW, Suite 300 Boca Rarton, FL 33487-2742pl_PL
dc.referencesBallester AR, Molthoff J, de Vos R, te Lintel Hekkert B, Orzaez D, Fernandez-Moreno JP, Tripodi P, Grandillo S, Martin C, Heldens J, Ykema M, Granell A, Bovy A (2010) Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit colour. Plant Physiol 1:71–84. doi:10.1104/pp.109. 147322pl_PL
dc.referencesBarabasz A, Wilkowska A, Ruszczyn´ska A, Bulska E, Hanikenne M, Czarny M, Kra¨mer U, Antosiewicz DM (2012) Metal response of transgenic tomato plants expressing P1B-ATPase. Physiol Plant 145:315–331. doi:10.1111/j.1399-3054.2012.01584.xpl_PL
dc.referencesBartoszewski G, Niedziela A, Szwacka M, Niemirowicz-Szczyt K (2003) Modification of tomato taste in transgenic plants carrying a thaumatine gene from Thaumatococcus daniellii benth. Plant Breed 4:347–351. doi:10.1046/j.1439-0523.2003.00864.xpl_PL
dc.referencesBassa C, Mila I, Bouzayen M, Audran-Delalande C (2012) Phenotypes associated with down-regulation of Sl-IAA27 support functional diversity among Aux/IAA family members in tomato. Plant Cell Physiol 9:1583–1595. doi:10.1093/pcp/pcs101pl_PL
dc.referencesBassolino L, Zhang Y, Schoonbeek HJ, Kiferle C, Perata P, Martin C (2013) Accumulation of anthocyanins in tomato skin extends shelf life. New Phytol 3:650–655. doi:10.1111/nph.12524pl_PL
dc.referencesBhaskaran S, Savithramma DL (2011) Co-expression of Pennisetum glaucum vacuolar Na?/H? antiporter and Arabidopsis H? - pyrophosphatase enhances salt tolerance in transgenic tomato. J Exp Bot 15:5561–5570. doi:10.1093/jxb/err237pl_PL
dc.referencesBhatia P, Ashwath N (2005) Effect of duration of light: dark cycles on in vitro shoot regeneration of tomato. Asian J Plant Sci 3:255–260. doi:10.3923/ajps.2005.255.260pl_PL
dc.referencesBhatia P, Ashwath N (2008) Improving the quality of in vitro cultured shoots of tomato (Lycopersicon esculentum Mill.) cv. Red Coat. Biotechnology 2:188–193. doi:10.3923/biotech.2008.188.193pl_PL
dc.referencesBiswas SK, Pandey NK, Rajik M (2012) Inductions of defense response in tomato against Fusarium Wilt through inorganic chemicals as inducers. J Plant Pathol Microbiol 3:128. doi:10. 4172/2157-7471.1000128pl_PL
dc.referencesBrummell AA, Harpster MH, Civello PC, Palys JM, Bennett AB, Dunsmuira P (1999) Modification of expansin protein abundance in tomato fruit alters softening and cellwall polymer metabolism during ripening. Plant Cell 11:2203–2216. doi:10.1105/tpc.11.11.2203pl_PL
dc.referencesButelli E, Titta L, Giorgio M, Mock HP, Matros A, Peterek S, Schijlen EGM, Hall RD, Bovy AG, Luo J, Martin C (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26:1301–1308. doi:10.1038/nbt.1506pl_PL
dc.referencesChaudry A, Abbas S, Yasmin A, Rashid H, Ahmed H, Anjum MA (2010) Tissue culture studies in tomato (Lycopesricon esculentum) var. Moneymaker. Pak J Bot 1:155–163pl_PL
dc.referencesChen SC, Liu AR, Wang FH, Ahammed G (2009a) Combined overexpression of chitinase and defensine genes transgenic tomato enhances resistance to Botrytis cinerea. Afr J Biotechnol 20:5182–5188. doi:10.5897/AJB09.704pl_PL
dc.referencesChen Y, Wang A, Zhao L, Shen G, Cui L, Tang K (2009b) Expression of thymosin a1 concatemer in transgenic tomato (Solanum lycopersicum) fruits. Biotechnol Appl Biochem 52:303–312. doi:10.1042/BA20080054pl_PL
dc.referencesCheng L, Zou Y, Ding S, Zhang J, Yu X, Cao J, Lu G (2009) Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. J Integr Plant Biol 5:489–499. doi:10.1111/j.1744-7909.2009.00816.xpl_PL
dc.referencesChetty VJ, Ceballos N, Garcia D, Narvaez-Vasquez J, Lopez W, Orozco-Cardenas ML (2013) Evaluation of four Agrobacterium tumefaciens strains for the genetic transformation of tomato (Solanum lycopersicum L.) cultivar Micro-Tom. Plant Cell Rep 32:239–247. doi:10.1007/s00299-012-1358-1pl_PL
dc.referencesColliver S, Bovy A, Collins G, Muir S, Robinson S, de Vos CHR, Verhoeyen ME (2002) Improving the nutritional content of tomatoes through reprogramming their flavonoid biosynthetic pathway. Phytochem Rev 1:113–123pl_PL
dc.referencesCong B, Tanksley SD (2006) FW2.2 and cell cycle control in developing tomato fruit: a possible example of gene co-option in the evolution of a novel organ. Plant Mol Biol 62:867–880. doi:10.1007/s11103-006-9062-6pl_PL
dc.referencesCueno ME, Hibi Y, Karamatsu K, Yasutomi Y, Imai K, Laurena AC, Okamoto T (2010) Preferential expression and immunogenicity of HIV-1 Tat fusion protein expressed in tomato plant. Transgenic Res 5:889–895. doi:10.1007/s11248-009-9358-9pl_PL
dc.referencesD’Ambrosio C, Stigliani AL, Giorio G (2011) Overexpression of CrtR-b2 (carotene beta hydroxylase 2) from S. lycopersicum L. differentially affects xanthophylls synthesis and accumulation in transgenic tomato plants. Transgenic Res 20:47–60. doi:10.1007/ s11248-010-9387-4pl_PL
dc.referencesDai CX, Mertz D, Lambeth VN (1988) Effect of seedling age, orientation and genotype of hypocotyl and cotyledon explants of tomato on shoot and root regeneration. Genet Manip Crops Newslett 4:26–35. doi:10.3103/S1068367413030178pl_PL
dc.referencesDavidovich-Rikanati R, Sitrit Y, Tadmor Y, Iijima Y, Bilenko N, Bar E, Carmona B, Fallik E, Dudai NE, Simon JE, Pichersky E, Lewinsohn E (2007) Enrichment of tomato flavour by diversion of the early plastidial terpenoid pathway. Nat Biotechnol 25:899–901. doi:10.1038/nbt1312pl_PL
dc.referencesDavuluri GR, van Tuinen A, Fraser PD, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlig J, Bramley PM, Pennings HM, Bowler C (2005) Fruit-specific RNAimediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat Biotechnol 7:890–895. doi:10. 1038/nbt1108pl_PL
dc.referencesde Jong M, Wolters-Arts M, Garcıa-Martınez JL, Mariani C, Vriezen WH (2011) The Solanum lycopersicum AUXIN RESPONSE FACTOR 7 (SlARF7) mediates cross-talk between auxin and gibberellins signalling during tomato fruit set and development. J Exp Bot 2:617–626. doi:10.1093/jxb/erq293pl_PL
dc.referencesde la Garza RID, Quinlivan PE, Klaus SMJ, Basset GJC, Gregory JF, Hanson AD (2004) Folate biofortification in tomatoes by engineering the pteridine branch of folate synthesis. Proc Natl Acad Sci USA 38:13720–13725. doi:10.1073/pnas.0404208101pl_PL
dc.referencesde la Garza RID, Gregory JF, Hanson AD (2007) Folate biofortification of tomato fruit. Proc Natl Acad Sci USA 10:4218–4222. doi:10.1073/pnas.0700409104pl_PL
dc.referencesDharmapuria S, Rosatia C, Pallara P, Aquilani R, Bouvier F, Camara B, Giuliano G (2002) Metabolic engineering of xanthophyll content in tomato fruits. FEBS Lett 519:30–34. doi:10.1016/ S0014-5793(02)02699-6pl_PL
dc.referencesElı´as-Lo´pez AL, Marquina B, Gutie´rrez-Ortega A, Aguilar D, Gomez-Lim M, Herna´ndez-Pando R (2008) Transgenic tomato expressing interleukin-12 has a therapeutic effect in a murine model of progressive pulmonary tuberculosis. Clin Exp Immunol 154:123–133. doi:10.1111/j.1365-2249.2008.03723.xpl_PL
dc.referencesEl-Siddig MA, El-Hussein AA, Saker MM (2011) Agrobacteriummediated transformation of tomato plants expressing defensin gene. Int J Agric Res 4:323–334. doi:10.3923/ijar.2011.323.334pl_PL
dc.referencesEnfissi EMA, Fraser PD, Lois LM, Boronat A, Schuch W, Bramley PM (2005) Metabolic engineering of the mevalonate and nonmevalonate isopentenyl diphosphate-forming pathways for the production of health-promoting isoprenoids in tomato. Plant Biotechnol J 3:17–27. doi:10.1111/j.1467-7652.2004.00091.x FAOSTAT (2011). http://faostat3.fao.org/faostat-gateway/go/to/down load/Q/QC/Epl_PL
dc.referencesFederal Office of Consumer Protection and Food Safety (German) and Partners (2009) Long-term effects of genetically modified (GM) crops on helath and the environment (including biodiversity): Prioritisation of potential risks and delimitation of uncertainties. Federal Office of Consumer of Food Safety, Berlin. http://bch. cbd.int/database/record-v4-sthtml?documentid=101007pl_PL
dc.referencesFernandez-Moreno JP, Orzaez D, Granell A (2013) VIGS: a tool to study fruit development in Solanum lycopersicum. Methods Mol Biol 975:183–196. doi:10.1007/978-1-62703-278-0_14pl_PL
dc.referencesFoolad MR (2007) Genome mapping and molecular breeding of tomato. Int J Plant Genomics 64358:52. doi:10.1155/2007/64358pl_PL
dc.referencesFraser PD, Romer S, Shipton CA, Mills PB, Kiano JW, Misawa N, Drake RG, Schuch W, Bramley PM (2002) Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proc Natl Acad Sci USA 2:1092–1109. doi:10.1073/pnas.241374598pl_PL
dc.referencesFraser PD, Enfissi EMA, Halket JM, Truesdale MR, Yu D, Gerrish C, Bramleya PM (2007) Manipulation of phytoene levels in tomato fruit: effects on isoprenoids, plastids, and intermediary metabolism. Plant Cell 19:3194–3211. doi:10.1105/tpc.106.049817pl_PL
dc.referencesFuentes AD, Ramos PL, Sanchez Y, Callard D, Ferreira A, Tiel K, Cobas K, Rodriguez R, Borroto C, Doreste V, Pujol M (2008) A transformation procedure for recalcitrant tomato by addressing transgenic plant-recovery limiting factors. Biotechnol J 3:1088–1093. doi:10.1002/biot.200700187pl_PL
dc.referencesFukkuda-Parr S (2012) The green revolution: GM crops and unequal development. UK Bath Press, Bathpl_PL
dc.referencesGamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158. doi:10.1016/0014-4827(68)90403-5pl_PL
dc.referencesGarchery C, Gest N, Do PT, Alhagdow M, Baldet P, Menard G, Rothan C, Massot C, Gautier H, Aarrouf J, Fernie AR, Stevens R (2013) A diminution in ascorbate oxidase activity affects carbon allocation and improves yield in tomato under water deficyt. Plant Cell Environ 36:159–175. doi:10.1111/j.1365-3040.2012. 02564.xpl_PL
dc.referencesGarcia V, Stevens R, Gil L, Gilbert L, Gest N, Petit J, Faurobert M, Maucourt M, Deborde C, Moing A, Poessel JL, Jacob D, Bouchet JP, Giraudel JL, Gouble B, Page D, Alhagdow M, Massot C, Gautier H, Lemaire-Chamley M, Rolin D, Usadel B, Lahaye M, Causse M, Baldet P, Rothan C (2009) An integrative genomics approach for deciphering the complex interactions between ascorbate metabolism and fruit growth and composition in tomato. C R Biol 11:1007–1021. doi:10.1016/j.crvi.2009.09. 013pl_PL
dc.referencesGarcia-Hurtado N, Carrera E, Ruiz-Rivero O, Lo´pez-Gresa MP, Hedden P, Gong F, Garcı´a-Martı´nez JL (2012) The characterization of transgenic tomato overexpressing gibberellin 20- oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellins biosynthetic pathway. J Exp Bot 16:5803–5813. doi:10.1093/jxb/ers229pl_PL
dc.referencesGilbert L, Alhagdow M, Nunes-Nesi A, Quemener B, Guillon F, Bouchet B, Faurobert M, Gouble B, Page D, Garcia V, Peti J, Stevens R, Causse M, Fernie AR, Lahaye M, Rothan C, Baldet P (2009) GDP-D-mannose 3,5-epimerase (GME) plays a key role at the intersection of ascorbate and non-cellulosic cell-wall biosynthesis in tomato. Plant J 3:499–508. doi:10.1111/j.1365- 313X.2009.03972.xpl_PL
dc.referencesGiliberto L, Perrotta G, Pallara P, Weller JL, Fraser PD, Bramley PM, Fiore A, Tavazza M, Giuliano G (2005) Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol 137:199–208. doi:10.1111/j.1365-313X.2009.03972.xpl_PL
dc.referencesGill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. doi:10.1016/j.plphy.2010.08.016pl_PL
dc.referencesGłowacka B (2004) Influence of light colour on micropropagation of tomato (Lycopersicon esculentum Mill.). Biotechnologia 2:168–175pl_PL
dc.referencesGodishala V, Mangamoori L, Nanna R (2011) Plant regeneration via somatic embryogenesis in cultivated tomato (Solanum lycopersicum L.). J Cell Tissue Res 1:2521–2528pl_PL
dc.referencesGoel D, Singh AK, Yadav V, Babbar SB, Murata N, Bansal KC (2011) Transformation of tomato with a bacterial coda gene enhances tolerance to salt and water stresses. J Plant Physiol 11:1286–1294. doi:10.1016/j.jplph.2011.01.010pl_PL
dc.referencesGoetz M, Hooper LC, Johnson SD, Rodrigues JC, Vivian-Smith A, Koltunov AM (2007) Expression of aberrant forms of auxin response factor 8 stimulates parthenocarpy in Arabidopsis and tomato. Plant Physiol 2:336–351. doi:10.1104/pp.107.104174pl_PL
dc.referencesGuan ZJ, Guo B, Huo YL, Dai JK, Wei YH (2012) Histocytological examination on organogenesis and somatic embryogenesis of HBsAg-transgenic cherry tomato mutant. Int J Exp Bot 81:51–58pl_PL
dc.referencesGuo M, Zhang YL, Meng ZJ, Jiang J (2012) Optimization of factors affecting Agrobacterium-mediated transformation of Micro-Tom tomatoes. Genet Mol Res 1:661–671. doi:10.4238/2012pl_PL
dc.referencesHanus-Fajerska E (2006) Variation in tomato plants regenerated from Cucumber Mosaic Viruse infected tissue. ISHS Acta Hort789: XV Meeting of the EUCARPIA Tomato Working Group. http:// www.actahort.org/books/789/789_40.htmpl_PL
dc.referencesHarish MC, Rajeevkumar S, Sathishkumar R (2010) Efficient in vitro callus induction and regeneration of different tomato cultivars of India. Asian J Biotechnol 3:178–184. doi:10.3923/ajbkr.2010. 178.184pl_PL
dc.referencesHasan M, Khan AJ, Khan S, Shah AH, Khan AR, Mirza B (2008) Transformation of tomato (Lycopesricon esculentum Mill.) with Arabidopsis early flowering gene APETALI (API) Through Agrobacterium infiltration of ripened fruits. Pak J Bot 1:161–173pl_PL
dc.referencesHerbette S, Tourvielle de Labrouheb D, Drevetc JR, Roeckel-Dreveta P (2011) Transgenic tomatoes showing higher glutathione peroxydase antioxidant activityare more resistant to an abiotic stress but more susceptible to biotic stresses. Plant Sci 180:548–553. doi:10.1016/j.plantsci.2010.12.002pl_PL
dc.referencesHirai T, Fukukawa G, Kakuta H, Fukuda N, Ezura H (2010) Production of recombinant miraculin using transgenic tomatoes in a closed cultivation system. J Agric Food Chem 58:6096–6101. doi:10.1021/jf100414vpl_PL
dc.referencesHorvath DM, Stall RE, Jones JB, Pauly MH, Vallad GV, Dahlbeck D, Staskawicz BJ, Scott JW (2012) Transgenic resistance confers effective field level control of bacterial spot disease in tomato. PLoS ONE 7(8):e42036. doi:10.1371/journal.pone.0042036pl_PL
dc.referencesHsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, Chan MT (2002) Heterology expression of the Arabidopsis C-Repeat/ Dehydration Response Element Binding Factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129:1086–1094pl_PL
dc.referencesHsieh TH, Li CW, Su RC, Cheng CP, Tsai YC, Chan MT (2010) A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response. Planta 231:1459–1473. doi:10. 1007/s00425-010-1147-4pl_PL
dc.referencesHu DG, Wang SH, Luo H, Ma QJ, Yao YX, You CX, Hao YJ (2012) Overexpression of MdVHA-B, V-ATPase gene from apple, confers tolerance to drought in transgenic tomato. Sci Hortic 145:94–101. doi:10.1016/j.scienta.2012.08.010pl_PL
dc.referencesIijima Y, Gang DR, Fridman E, Lewinson E, Pichersky E (2004) Characterization of geraniol synthase from the peltate glands of sweet basil. Plant Physiol 134:370–379. doi:10.1104/pp.103. 032946pl_PL
dc.referencesIshag S, Osman MG, Khalafalla MM (2009) Effects of growth regulators and genotype on shoot regeneration in tomato (Lycopresicon esculentum c.v. Omdurman). Int J Sustain Crop Prod 6:7–13pl_PL
dc.referencesJabeen N, Mirza B, Chaudhary Z, Rashid H, Gulfraz M (2009) Study of the factors affecting Agrobacterium mediated gene transformation in tomato (Lycopersicon esculentum Mill.) cv. Riogrande using rice chitinase (CHT-3) gene. Pak J Bot 5:2605–2614pl_PL
dc.referencesJaberolansar N, Hayati J, Rajabi-Memari H, Hosseini-Tafreshi SA, Nabati-Ahmadi D (2010) Tomato and tobacco phytoene desaturase gene silencing by virus-induced gene silencing (VIGS) technique. Iran J Virol 1:7–11pl_PL
dc.referencesJehan S, Hassanein AM (2013) Hormonal requirements trigger different organogenic pathways on tomato nodal explants. Am J Plant Sci 4:2118–2125. doi:10.4236/ajps.2013.411263pl_PL
dc.referencesJua´rez P, Presa S, Espı´ J, Pineda B, Anto´n MT, Moreno V, Buesa J, Granell A, Orzaez D (2012) Neutralizing antibodies against rotavirus produced in transgenically labelled purple tomatoes. Plant Biotechnol J 3:341–352. doi:10.1111/j.1467-7652.2011. 00666.xpl_PL
dc.referencesJung YJ (2013) Enhanced resistance to bacterial pathogen in transgenic tomato plants expressing cathelicidin antimicrobial peptide. Biotechnol Bioprocess Eng 18:615–624. doi:10.1007/ s12257-013-0392-3pl_PL
dc.referencesKantor M, Sestras R, Chowudhury K (2010) Identification of the most organogenic-responsive variety of tomato using the variety X medium interaction. Rom Biotechnol Lett 5:5640–5645pl_PL
dc.referencesKantor M, Sestras R, Chowdhury K (2013) Transgenic tomato plants expressing the antigen gene PfCP-2.9 of Plasmodium falciparum. Pesquisa Agropecua´ria Brasileira 1:73–79. doi:10.1590/ S0100-204X2013000100010pl_PL
dc.referencesKato K, Maruyama S, Hirai T, Hiwasa-Tanase K, Mizoguchi T, Goto E, Ezura H (2011) A trial of production of the plant-derived high-value protein in a plant factory. Photosynthetic photon fluxes affect the accumulationof recombinant miraculin in transgenic tomato fruits. Plant Signal Behav 8:1172–1179. doi:10.4161/psb.6.8.16373pl_PL
dc.referencesKhare N, Goyary D, Singh NK, Shah P, Rathore M, Anandhan S, Sharma D, Arif M, Ahmed Z (2010) Transgenic tomato cv. Pusa Uphar expressing a bacterial mannitol-1-phosphate dehydrogenase gene confers abiotic stress tolerance. Plant Cell Tissue Organ Cult 103:267–277. doi:10.1007/s11240-010-9776-7pl_PL
dc.referencesKhoudi H, Nouri-Khemakhem A, Gouiaa S, Masmoudi K (2009) Optimization of regeneration and transformation parameters in tomato and improvement of its salinity and drought tolerance. Afr J Biotechnol 22:6068–6076. doi:10.5897/AJB09.057pl_PL
dc.referencesKhuong TTH, Cre´te´ P, Robaglia C, Caffarri S (2013) Optimisation of tomato Micro-tom regeneration and selection on glufosine/Basta and dependency of gene silencing on transgene copy number. Plant Cell Rep 32:1441–1454. doi:10.1007/s00299-013-1456-8pl_PL
dc.referencesKim HS, Youma JW, Moona KB, Ha JH, Kim YH, Joung H, Jeon JH (2012) Expression analysis of human b-secretase in transgenic tomato fruits. Protein Expr Purif 82:125–131. doi:10.1016/j.pep. 2011.11.012pl_PL
dc.referencesKobayashi M, Nagasaki H, Garcia V, Just D, Bres C, Mauxion JP, Paslier MCL, Brunel D, Suda K, Minakuchi Y, Toyoda A, Fujiyama A, Toyoshima H, Suzuki T, Igarashi K, Rothan C, Kaminuma E, Nakamura Y, Yano K, Aoki K (2013) Genomewide analysis of intraspecific DNA polymorphism in ‘Micro- Tom’, a model cultivar of tomato (Solanum lycopersicum). Plant Cell Physiol 2:445–454. doi:10.1093/pcp/pct181pl_PL
dc.referencesKoenig D, Jimenez-Gomez JM, Kimura S, Fulop D, Chitwood DH, Hedland LR, Kumar R, Covington MF, Devisetty UK, Tat AV, Toghe T, Bolger A, Schneeberger K, Ossowski S, Lanz Ch, Xiong G, Taylor-Teeples M, Rady SM, Pauly M, Weigel D, Usadel B, Fernie AF, Peng J, Sinnha NR, Maloof JN (2013) Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proc Natl Acad Sci USA 28:E2655–E2662. doi:10.1073/pnas.1309606110pl_PL
dc.referencesKoleva Gudeva L, Dedejski G (2012) In vivo and in vitro production of some genotypes of cherry tomato Solanum lycopersicum var. Cerasiforme (DUNAL). Int J Farm Allied Sci 4: 91–96. URL: http://ijfas.com/2012-1-4/pl_PL
dc.referencesKoul B, Sirivastava S, VijayAmla D, Sanyal I (2014) Establishment and optimization of Agrobacterium-mediated transformation and regeneration of tomato (Solanum lycopersicum L.) Int. J Biosci 10:51–69. doi:10.12692/ijb/4.10.51-69pl_PL
dc.referencesKurokawa N, Hirai T, Takayama M, Hiwasa-Tanase K, Ezura H (2013) An E8 promoter–HSP terminator cassette promotes the high-level accumulation of recombinant protein predominantly in transgenic tomato fruits: a case study of miraculin. Plant Cell Rep 32:529–536. doi:10.1007/s00299-013-1384-7pl_PL
dc.referencesLai L, Huang T, Wang Y, Liu Y, Zhang J, Song Y (2009) The expression of analgesic-antitumor peptide (AGAP) from Chinese Buthus martensii Karsch in transgenic tobacco and tomato. Mol Biol Rep 36:1033–1039. doi:10.1007/s11033-008-9277-5pl_PL
dc.referencesLee TJ, Coyne DP, Clemente TE, Mitra A (2002) Partial resistance to bacterial wilt in transgenic tomato plants expressing antibacterial lactoferrin gene. J Am Soc Hortic Sci 2:150–164pl_PL
dc.referencesLi T, Sun JK, Lu ZH, Liu Q (2011) Transformation of HBsAg (Hepatitis B Surface Antigen) gene into tomato mediated by Agrobacterium tumefaciens. Czech J Genet Plant Breed 2:69–77pl_PL
dc.referencesLi C, Yan JM, Li YZ, Zhang ZC, Wang QL, Liang Y (2013) Silencing the SpMPK1, SpMPK2, and SpMPK3 genes in tomato reduces abscisic acid—mediated drought tolerance. Int J Mol Sci 14:21983–21996. doi:10.3390/ijms141121983pl_PL
dc.referencesLiu J, Cong B, Tanksley SD (2003) Generation and analysis of an artificial gene dosage series in tomato to study the mechanism by which the cloned quantitative trait locus fw2.2 controls fruit size. Plant Physiol 1:292–299. doi:10.1104/pp.102.018143pl_PL
dc.referencesLiu Y, Roof S, Ye Z, Barry C, van Tuinen A, Vrebalov J, Bowler C, Giovannoni J (2004) Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proc Natl Acad Sci USA 26:9897–9902. doi:10.1073/pnas.0400935101pl_PL
dc.referencesLou XM, Yao QH, Zhang Z, Peng RH, Xiong AS, Wang HK (2007) Expression of the human hepatitis B virus large surface antigen gene in transgenic tomato plants. Clin Vaccine Immunol 4:464–469. doi:10.1128/CVI.00321-06pl_PL
dc.referencesLozano R, Gimenez E, Cara B, Capel J, Angosto T (2009) Genetic analysis of reproductive development in tomato. Int J Dev Biol 53:1635–1648. doi:10.1387/ijdb.072440rlpl_PL
dc.referencesMa H, Song C, Borth W, Sether D, Melzer M, Hu J (2011) Modified expression of alternative oxidase in transgenic tomato and petunia affects the level of tomato spotted wilt virus resistance. BMC Biotechnol 11:96. doi:10.1186/1472-6750-11-96pl_PL
dc.referencesMaligeppagol M, Chandra GS, Prakash M, Navale PM, Deepa H, Rajeev PR, Asokan R, Babu KP, Babu CCB, Rao VK, Kumar KNK (2013) Anthocyanin enrichment of tomato (Solanum lycopersicum L.) fruit by metabolic engineering. Curr Sci 1:72–80pl_PL
dc.referencesMamidala P, Nanna RS (2011) Effect of genotype, explants source and medium on in vitro regeneration of tomato. Int J Genet Mol Biol 3:45–50pl_PL
dc.referencesMarti E, Gisbert C, Bishop GJ, Dixon MS, Garcia-Martinez JL (2006) Genetic and physiological characterization of tomato cv. Micro- Tom. J Exp Bot 9:2037–2047. doi:10.1093/jxb/erj154pl_PL
dc.referencesMathieu S, Dal Cin V, Fei Z, Li H, Bliss P, Taylor MG, Klee HJ, Tieman DM (2009) Flavour compounds in tomato fruits: identification of loci and potential pathways affecting volatile composition. J Exp Bot 1:325–337. doi:10.1093/jxb/ern294pl_PL
dc.referencesMcCormick S, Niedermeyer J, Fry J, Barnason A, Horsch R, Fraley R (1986) Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep 2:81–84pl_PL
dc.referencesMensuali-Sodi A, Panizza M, Tognoni F (1995) Endogenous ethylene requirement for adventitious root induction and growth in tomato cotyledons and lavandin microcuttings in vitro. Plant Growth Regul 17:205–212. doi:10.1007/BF00024727pl_PL
dc.referencesMinoia S, Petrozza A, D’Onofrio O, Piron F, Mosca G, Sozio G, Cellini F, Bendahmane A, Carriero F (2010) A new mutant genetic resource for tomato crop improvement by TILLING technology. BMC Res Notes 3:69–76. doi:10.1186/1756-0500-3- 69pl_PL
dc.referencesMishra KB, Iannacone R, Petrozza A, Mishra A, Armentano N, La Vecchia G, Trtilek M, Cellini F, Nedbal L (2012) Engneering drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission. Plant Sci 182:79–86. doi:10.1016/j. phytochem.2012.09.007pl_PL
dc.referencesMorgan MJ, Osorio S, Gehl B, Baxter CJ, Kruger NJ, Ratcliffe RG, Fernie AR, Sweetlove LJ (2013) Metabolic engineering of tomato fruit organic acid content guided by biochemical analysis of an introgression line. Plant Physiol 1:397–407. doi:10.1104/ pp.112.209619pl_PL
dc.referencesMuir SR, Collins GJ, Robinson S, Hughes SG, Bovy AG, de Vos CH, van Tunen AJ, Verhoyen ME (2001) Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat Biotechnol 5:470–474. doi:10.1038/88150pl_PL
dc.referencesMun˜oz-Mayor A, Pineda B, Garcia-Abella´n JO, Anto´n T, Garcia- Sogo B, Sanchez-Bel P, Flores FB, Atare´s A, Angosto T, Pintor- Toro JA, Moreno V, Bolarin MC (2012) Overexpression of dehydrin tas14 gene improves the osmotic stress imposed by drought and salinity in tomato. J Plant Physiol 169:459–468. doi:10.1016/j.jplph.2011.11.018pl_PL
dc.referencesMurashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.xpl_PL
dc.referencesNamitha KK, Negi P (2013) Morphogenetic potential of tomato (Lycopersicon esculentum,) cv. Arka Ahuti to plant growth regulators. Notulae Scientia Biologicae 2:220–225pl_PL
dc.referencesNeily MH, Matsukura Ch, Maucourt M, Bernillon S, Deborde C, Moing A, Yin YG, Saito T, Mori K, Asamizua E, Rolin D, Moriguchi T, Ezura H (2011) Enhanced polyamine accumulation alters carotenoid metabolism at the transcriptional level in tomato fruit over-expressing spermidine synthase. J Plant Physiol 168:242–252. doi:10.1016/j.jplph.2010.07.003pl_PL
dc.referencesOrzaez D, Granell A (2009) Reverse genetics and transient gene expression in fleshy fruits. Plant Signal Behav 9:864–867. doi:10.1104/pp.109.13900pl_PL
dc.referencesOrzaez D, Mirabel S, Wieland WH, Granell A (2006) Agroinjection of tomato fruits. A tool for rapid functional analysis of transgenes directly in fruit. Plant Physiol 1:3–11. doi:10.1104/ pp.105.068221pl_PL
dc.referencesOrzaez D, Medina A, Torre S, Fernandez-Moreno JP, Rambla JL, Fernandez-del-Carmen A, Butelli E, Martin C, Granell A (2009) A visual reporter system for virus-induced gene silencing in tomato fruit based on anthocyanin accumulation. Plant Physiol 3:1122–1134. doi:10.1104/pp.109.139006pl_PL
dc.referencesPaduchuri P, Gohokar S, Thamke B, Subhas M (2010) Transgenic tomatoes. Int J Adv Biotechnol Res 2:69–72. http://www. bipublication.compl_PL
dc.referencesPandey SK, Nookaraju A, Upadhayaya CP, Gururani MA, Venkatesh J, Kim DH, Park SW (2011) An update biotechnological approaches for improving abiotic tolerance stress in tomato. Crop Sci 51:1–22. doi:10.2135/cropsci2010.10.0579pl_PL
dc.referencesPark S, Jinsheng L, Pittman JK, Berkowitz GA, Yang H, Undurraga S, Morris J, Hirsch KD, Gaxiola RA (2005) Up-regulation of H?-pyrophosphatase (H?-PPase) as a strategy to engineer drought-resistant crop plants. Proc Natl Acad Sci USA 52:18830–18835. doi:10.1073/pnas.0509512102pl_PL
dc.referencesPatade VY, Khatri D, Kumari M, Grover A, Gupta SM, Ahmed Z (2013) Cold tolerance in Osmotin transgenic tomato (Solanum lycopersicum L.) is associated with modulation in transcript abundance of stress responsive genes. SpringerPlus 2:117. doi:10.1186/2193-1801-2-117pl_PL
dc.referencesPerlata IE, Spooner DM (2007) History, origin and early cultivation of tomato (Solanaceae). In: Rozdan MK, Matto AK (eds) Genetic improvement of solanaceous crops: tomato, vol 2. Science Publishers, Enfield, NH, pp 1–27pl_PL
dc.referencesPlana D, Fuentes A, Alvarez M, Lara RM, Alvarez F, Pujol M (2006) A new approach for in vitro regeneration of tomato plants devoid of exogenous plant growth hormones. Biotechnol J 1:1153–1157. doi:10.1002/biot.200500042pl_PL
dc.referencesRai AC, Singh M, Shah K (2013) Engineering drought tolerant tomato plants over-expressing BcZAT12 gene encoding a C2H2 zinc finger transcription factor. Phytochemistry 85:44–50. doi:10. 1016/j.phytochem.2012.09.007pl_PL
dc.referencesRaiola A, Rigano MM, Calafiore R, Frusciante L, Barone A (2014). Enhancing the human-promoting effects of tomato fruit for bofortified food. Hindawi Publishing Corporation Mediators of Inflammation. doi:10.1155/2014/139873pl_PL
dc.referencesRamirez YJP, Tasciotti E, Gutierrez-Ortega A, Donayre Torres AJ, Olivera Flores MT, Giacca M, Gomez Lim MA (2007) Fruitspecific expression of the human immunodeficiency virus type 1 tat gene in tomato plants and its immunogenic potential in mice. Clin Vaccine Immunol 6:685–692. doi:10.1128/CVI.00028-07pl_PL
dc.referencesRashid R, Bal SS (2010) Effect of hormones on direct shoot regeneration in hypocotyl explants of tomato. Notulae Scientia Biologicae 1:70–73pl_PL
dc.referencesRashid R, Bal SS (2011) Agrobacterium -mediated genetic transformation of tomato (Solanum lycopesricum L) with Cry1Ac gene for resistance against fruit borer. J Trop Agric 49(1–2):110–113pl_PL
dc.referencesRomero I, Tikunov Y, Bovy A (2011) Virus-induced gene silencing in detached tomatoes and biochemical effects of phytoene desaturase gene silencing. J Plant Physiol 168:1129–1135. doi:10. 1016/j.jplph.2010.12.020pl_PL
dc.referencesRuf S, Hermann M, Berger IJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 9:870–875. doi:10.1038/nbt0901- 870pl_PL
dc.referencesSaito T, Ariizumi T, Okabe Y, Asamizu E, Hiwasa-Tanase K, Fukuda N, Mizoguchi T, Yamazaki Y, Aoki K, Ezura H (2011) TOMATOMA: a novel tomato mutant database distributing Micro-Tom mutant collections. Plant Cell Physiol 2:283–296. doi:10.1093/pcp/pcr004pl_PL
dc.referencesSaker MM, Hussein HA, Osman NH, Soliman MH (2008) In vitro production of transgenic tomatoes expressing defensin gene using newly developed regeneration and transformation system. Arab J Biotechnol 1:59–70pl_PL
dc.referencesSaker MM, Salama HS, Salama M, El-Banna A, AbdelGhany NM (2011) Production of transgenic tomato plants expressing Cry 2Ab gene for the control of some lepidopterous insects endemic in Egypt. J Genet Eng Biotechnol 9:149–155. doi:10.1016/j.jgeb. 2011.08.001pl_PL
dc.referencesSchijlen E, de Vos CHR, Jonker H, van den Broeck H, Molthoff J, van Tunen A, Martens S, Bovy A (2006) Pathway engineering for healthy phytochemicals leading to the production of novel flavonoids in tomato fruit. Plant Biotechnol J 4:433–444. doi:10. 1111/j.1467-7652.2006.00192.xpl_PL
dc.referencesSchreiber G, Reuveni M, Evenor D, Oren-Shamir M, Ovadia R, Sapir-Mir M, Bootbool-Man A, Nahon S, Shlomo H, Chen L, Levin I (2012) ANTHOCYANIN1 from Solanum chilense is more efficient in accumulating anthocyanin metabolites than its Solanum lycopersicum counterpart in association with the ANTHOCYANIN FRUIT phenotype of tomato. Theor Appl Genet 124:295–307. doi:10.1007/s00122-011-1705-6pl_PL
dc.referencesShah MR, Mukherjee PK, Eapen S (2010) Expression of a fungal endochitinase gene in transgenic tomato and tobacco results in enhanced tolerance to fungal pathogens. Physiol Mol Biol Plants 1:39–51. doi:10.1007/s12298-010-0006-xpl_PL
dc.referencesSharma MK, Solanke AU, Jani D, Singh Y, Sharma AK (2009) A simple and efficient Agrobacterium-mediated procedure for transformation of tomato. J Biosci 3:423–433pl_PL
dc.referencesSharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26. doi:10. 1155/2012/217037pl_PL
dc.referencesSherkar HD, Chavan AM (2014) Studies on callus induction and shoot regeneration in tomato. Sci Res Rep 1:89–93pl_PL
dc.referencesShinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227. doi:10.1093/jxb/erl164pl_PL
dc.referencesSimkin AJ, Gaffe J, Alcaraz JP, Carde JP, Bramley PM, Fraser PD, Kuntz M (2007) Fibrillin influence on plastid ultrastructure and pigment content in tomato fruit. Phytochemistry 68:1545–1556. doi:10.1016/j.phytochem.2007.03.014pl_PL
dc.referencesSingh S, Rathore M, Goyar D, Singh RK, Anandhan S, Sharma DK, Ahmed Z (2011) Induced ectopic expression of At-CBF1 in marker-free transgenic tomatoes confers enhanced chilling tolerance. Plant Cell Rep 30:1019–1028. doi:10.1007/s00299- 011-1007-0pl_PL
dc.referencesSmith DL, Abbott AA, Gross KC (2002) Down-regulation of tomato b-galactosidase 4 results in decreased fruit softening. Plant Physiol 4:1755–1762. doi:10.1104/pp.011025pl_PL
dc.referencesSoria-Guerra RE, Rosales-Mendoza S, Marquez-Mercado C, Lopez- Revilla R, Castillo-Collazo R, Alpuche-Solıs AG (2007) Transgenic tomatoes express an antigenic polypeptide containing epitopes of the diphtheria, pertussis and tetanus exotoxins, encoded by a synthetic gene. Plant Cell Rep 26:961–968. doi:10. 1007/s00299-007-0306-ypl_PL
dc.referencesSoria-Guerra RE, Rosales-Mendoza S, Moreno-Fierros L, Lopez- Revilla R, Alpuche-Solıs AG (2011) Oral immunogenicity of tomato-derived sDPT polypeptide containing Corynebacterium diphtheriae, Bordetella pertussis and Clostridium tetani exotoxin epitopes. Plant Cell Rep 30:417–424. doi:10.1007/s00299-010- 0973-ypl_PL
dc.referencesSpolaroe S, Trainotti L, Casadoro G (2001) A simple protocol for transient gene expression in ripe fleshy fruit mediated by Agrobacterium. J Exp Bot 357:845–850. doi:10.1093/jexbot/52. 357.845pl_PL
dc.referencesThe Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641. doi:10.1038/nature11119pl_PL
dc.referencesTieman DM, Zeigler M, Schmelz EA, Taylor MG, Bliss P, Kirst M, Klee HJ (2006) Identification of loci affecting flavour volatile emissions in tomato fruits. J Exp Bot 4:887–896. doi:10.1093/ jxb/erj074pl_PL
dc.referencesTyburski J, Tretyn A (1999) Organogenetic response of photomorphogenic mutants of tomato. J Plant Physiol 155:568–575. doi:10. 1016/S0176-1617(99)80056-Xpl_PL
dc.referencesVelcheva M, Faltin Z, Flaishman M, Eshdat Y, Perl A (2005) A liquid culture system for Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum L. Mill.). Plant Sci 168:121–130. doi:10.1016/j.plantsci.2004.07.037pl_PL
dc.referencesVu T, Choudhury NR, Mukherjee SK (2013) Transgenic tomato plants expressing artificial microRNAs for silencing the pre-coat and coat proteins of a begomovirus, Tomato leaf curl New Delhi virus, show tolerance to virus infection. Virus Res 172:35–45. doi:10.1016/j.virusres.2012.12.008pl_PL
dc.referencesWaller JC, Akhtar TA, Lara-Nunez A, Gregory JF, McQuinn RP, Giovannoni JJ, Hanson AD (2010) Developmental and feedforward control of the expression of folate biosynthesis genes in tomato fruit. Mol Plant 1:66–77. doi:10.1093/mp/ssp057pl_PL
dc.referencesWang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, Chaabouni S, Latche A, Pech JC, Bouzayen M (2005) The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell 10:2676–2692. doi:10.1105/tpc. 105.033415pl_PL
dc.referencesWang Y, Wisniewski M, Meilan R, Cui M, Fuchigami L (2006) Transgenic tomato (Lycopersicon esculentum) overexpressing cAPX exhibits enhanced tolerance to UV-B and heat stress. J Appl Hortic 2:87–90pl_PL
dc.referencesWang S, Liu J, Feng Y, Niu X, Giovannoni J, Liu Y (2008) Altered plastid levels and potential for improved fruit nutrient content by downregulation of the tomato DDB1-interacting protein CUL4. Plant J 55:89–103. doi:10.1111/j.1365-313X.2008.03489.xpl_PL
dc.referencesWang BQ, Zhang QF, Liu JH, Li GH (2011) Overexpression of PtADC confers enhanced dehydratation and drought tolerance in transgenic tobacco and tomato: effect on ROS elimination. Biochem Biophys Res Commun 413:10–16. doi:10.1016/j.bbrc. 2011.08.015pl_PL
dc.referencesWayase UR, Shitole MG (2014) Effect of plant growth regulators on organogenesis in tomato (Lycopersicon esculentum Mill.) cv. Dhanashri. Int J Pure Appl Sci Technol 2:65–71pl_PL
dc.referencesWiktorek-Smagur A, Hnatuszko-Konka K, Gerszberg A, Kowalczyk T, Łuchniak P, Kononowicz AK, (2012) Green way of biomedicine— how to force plants to produce new important proteins. In: Yelda Ozden C¸ iftc¸i (ed) Transgenic Plants - Advances and Limitations, PhD. ISBN: 978-953-51-0181-9, InTech, doi: 10. 5772/31145pl_PL
dc.referencesWro´blewski T, Tomczak A, Michelmore R (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato, Arabidopsis. Plant Biotechnol J 2:259–273. doi:10.1111/j.1467-7652.2005.00123.xpl_PL
dc.referencesWu Z, Sun S, Wang F, Guo D (2011) Establishment of regeneration and transformation system of Lycopresicon esculentum Micro tom. Br Biotechnol J 3:53–60. www.sciencedomain.org/down load.php?f=1311487212-Guo.pdfpl_PL
dc.referencesWurbs D, Ruf S, Bock R (2007) Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant J 49:276–288. doi:10.1111/j.1365- 313X.2006.02960.xpl_PL
dc.referencesYanez M, Caceres S, Orellana S, Bastias A, Verdugo I, Luiz-Lara S, Casaretto JA (2009) An abiotic stress-responsive bZIP transcription factor from wild and cultivated tomatoes regulates stress-related genes. Plant Cell Rep 10:1497–507. doi:10.1007/ s00299-009-0749-4pl_PL
dc.referencesYang L, Shen H, Pan A, Chen J, Huang C, Zhang D (2005) Screening and construct-specific detection methods of transgenic Hufan No 1 tomato by conventional and real-time PCR. J Sci Food Agric 85:2159–2166. doi:10.1002/jsfa.2193pl_PL
dc.referencesYang S, Vanderbeld Wan J, Huang Y (2010) Narrowing down the targets: towards successful genetic engineering of droughttolerant crop. Mol Plant 3:469–490. doi:10.1093/mp/ssq016pl_PL
dc.referencesYarra R, He SJ, Abbagani S, Ma B, Bulle M, Zhang WK (2012) Overexpression of wheat Na?/H? antiporter gene (TaNHX2) enhances tolerance to salt stress in transgenic tomato plants (Solanum lycopersicum L.). Plant Cell Tissue Organ Cult 111:49–57. doi:10.1007/s11240-012-0169-ypl_PL
dc.referencesYasmeen A (2009) An improved protocol for the regeneration and transformation of tomato (cv. Rio Grande). Acta Physiol Plant 31:1271–1277pl_PL
dc.referencesYasmeen A, Mirza B, Inayatullah S, Safdar N, Jamil M, Ali S, Choudry MF (2009) In planta transformation of tomato. Plant Mol Biol Rep 27:20–28. doi:10.1007/s11105-008-0044-5pl_PL
dc.referencesYoum JW, Jeon JH, Kim H, Kim YHK, Ko K, Joung H, Kim HS (2008) Transgenic tomatoes expressing human beta-amyloid for use as a vaccine against Alzheimer’s disease. Biotechnol Lett 30:1839–1845. doi:10.1007/s10529-008-9759-5pl_PL
dc.referencesZanor MI, Osorio S, Nunes-Nesi A, Carrari F, Lohse M, Usadel B, Kuhn C, Bleiss W, Giavalisco P, Willmitzer L, Sulpice R, Zhou YH, Fernie AR (2009) RNA interference of LIN5 in tomato confirms its role in controlling Brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility. Plant Physiol 3:1204–1218. doi:10.1104/pp.109.136598pl_PL
dc.referencesZhang H, Zhao L, Chen Y, Cui L, Ren W, Tang K (2007) Expression of human coagulation Factor IX in transgenic tomato (Lycopersicon esculentum). Biotechnol Appl Biochem 48:101–107. doi:10.1042/BA20060224pl_PL
dc.referencesZhang C, Liu J, Zhang Y, Cai X, Gong P, Zhang J, Wang T, Li H, Ye Z (2011) Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Rep 30:389–398. doi:10.1007/s00299-010- 0939-0pl_PL
dc.referencesZhang W, Hou L, Zhao H, Li M (2012) Factors affecting regeneration of tomato cotyledons. Biosci Methods 4:27–33pl_PL
dc.referencesZhou F, Badillo-Corona JA, Karcher D, Gonzalez-Rabade N, Piepenburg K, Borchers AM, Maloney AP, Kavanagh TA, Gray JC, Bock R (2008) High-level expression of human immunodeficiency virus antigens from the tobacco and tomato plastid genomes. Plant Biotechnol J 9:897–913. doi:10.1111/j.1467- 7652.2008.00356.xpl_PL
dc.referencesZhou T, Zhang H, Lai T, Qin C, Shi N, Wang H, Jin M, Zhong S, Fan Z, Liu Y, Wu Z, Jackson S, Giovannoni JJ, Rolin D, Gallusci P, Hong Y (2012) Virus-induced gene complementation reveals a transcription factor network in modulation of tomato fruit ripening. Sci Rep 2:836. doi:10.1038/srep00836pl_PL
dc.contributor.authorEmailUniversity of Lodz, Department of Genetics, Plant Molecular Biology and Biotechnologypl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 3.0 Polska
Except where otherwise noted, this item's license is described as Uznanie autorstwa 3.0 Polska