Pokaż uproszczony rekord

dc.contributor.authorRewicz, Tomasz
dc.contributor.authorWattier, Remi
dc.contributor.authorGrabowski, Michal
dc.contributor.authorRigaud, Thierry
dc.contributor.authorBącela-Spychalska, Karolina
dc.date.accessioned2015-04-21T11:04:08Z
dc.date.available2015-04-21T11:04:08Z
dc.date.issued2015-02-18
dc.identifier.issn1932-6203
dc.identifier.urihttp://hdl.handle.net/11089/8074
dc.description.abstractThe amphipod Dikerogammarus villosus has colonized most of the European main inland water bodies in less than 20 years, having deteriorating effect on the local benthic communities. Our aim was to reveal the species phylogeography in the native Black Sea area, to define the source populations for the colonization routes in continental Europe and for the newly established UK populations. We tested for the loss of genetic diversity between source and invasive populations as well as along invasion route. We tested also for isolation by distance. Thirty three native and invasive populations were genotyped for mtDNA (COI, 16S) and seven polymorphic nuclear microsatellites to assess cryptic diversity (presence of deeply divergent lineages), historical demography, level of diversity within lineage (e.g., number of alleles), and population structure. A wide range of methods was used, including minimum spanning network, molecular clock, Bayesian clustering and Mantel test. Our results identified that sea level and salinity changes during Pleistocene impacted the species phylogeography in the Black Sea native region with four differentiated populations inhabiting, respectively, the Dnieper, Dniester, Danube deltas and Durungol liman. The invasion of continental Europe is associated with two sources, i.e., the Danube and Dnieper deltas, which gave origin to two independent invasion routes (Western and Eastern) for which no loss of diversity and no isolation by distance were observed. The UK population has originated in the Western Route and, despite very recent colonization, no drastic loss of diversity was observed. The results show that the invasion of the killer shrimp is not associated with the costs of loosing genetic diversity, which may contribute to the success of this invader in the newly colonized areas. Additionally, while it has not yet occurred, it might be expected that future interbreeding between the genetically diversified populations from two independent invasion routes will potentially even enhance this success.pl_PL
dc.language.isoenpl_PL
dc.relation.ispartofseriesPLoS One;10(2)
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.titleOut of the Black Sea: Phylogeography of the Invasive Killer Shrimp Dikerogammarus villosus across Europepl_PL
dc.typeArticlepl_PL
dc.page.number1-20pl_PL
dc.contributor.authorAffiliationRewicz Tomasz, University of Lodz, Department of Invertebrate Zoology and Hydrobiologypl_PL
dc.contributor.authorAffiliationWattier Remi, Université de Bourgogne, Equipe Ecologie Evolutivepl_PL
dc.contributor.authorAffiliationGrabowski, Michał, University of Lodz, Department of Invertebrate Zoology and Hydrobiologypl_PL
dc.contributor.authorAffiliationRigaud Thierry, Université de Bourgogne, Equipe Ecologie Evolutivepl_PL
dc.contributor.authorAffiliationBącela-Spychalska Karolina, University of Lodz, Department of Invertebrate Zoology and Hydrobiologypl_PL
dc.referencesLambertini M, Leape J, Marton-Lefevre J, Mitter-Meier RA, Rose M, et al. (2011) Invasives: A Major Conservation Threat. Science 333: 404–405. doi: 10.1126/science.333.6041.404-a PMID: 21778381pl_PL
dc.referencesRichardson DM, Ricciardi A (2013) Misleading criticisms of invasion science: a field guide. Diversity and Distributions 19: 1461–1467pl_PL
dc.referencesSimberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, et al. (2013) Impacts of biological invasions: what's what and the way forward. Trends in Ecology & Evolution 28: 58–66. doi: 10.1016/j.cub.2014. 11.067 PMID: 25619764pl_PL
dc.referencesPaolucci EM, MacIsaac HJ, Ricciardi A (2013) Origin matters: alien consumers inflict greater damage on prey populations than do native consumers. Diversity and Distributions 19: 988–995.pl_PL
dc.referencesvan Riel MC, Healy EP, van der Velde G, de Vaate AB (2007) Interference competition among native and invader amphipods. Acta Oecologica-International Journal of Ecology 31: 282–289.pl_PL
dc.referencesvan Riel MC, van der Velde G, de Vaate AB (2009) Interference competition between alien invasive gammaridean species. Biological Invasions 11: 2119–2132.pl_PL
dc.referencesTompkins DM, Poulin R (2006) Parasites and Biological Invasions. In: Allen RD, Lee WG, editors. Biological Invasions in New Zealand. Berlin, Heidelberg: Springer. pp. 67–86.pl_PL
dc.referencesZaiko A, Daunys D, Olenin S (2009) Habitat engineering by the invasive zebra mussel Dreissena polymorpha (Pallas) in a boreal coastal lagoon: impact on biodiversity. Helgoland Marine Research 63: 85–94.pl_PL
dc.referencesEstoup A, Guillemaud T (2010) Reconstructing routes of invasion using genetic data: why, how and so what? Molecular Ecology 19: 4113–4130. doi: 10.1111/j.1365-294X.2010.04773.x PMID: 20723048pl_PL
dc.referencesFitzpatrick BM, Fordyce JA, Niemiller ML, Reynolds RG (2012) What can DNA tell us about biological invasions? Biological Invasions 14: 245–253.pl_PL
dc.referencesBastrop R, Jurss K, Sturmbauer C (1998) Cryptic species in a marine polychaete and their independent introduction from North America to Europe. Molecular Biology and Evolution 15: 97–103. PMID: 9491608pl_PL
dc.referencesLarson ER, Abbott CL, Usio N, Azuma N, Wood KA, et al. (2012) The signal crayfish is not a single species: cryptic diversity and invasions in the Pacific Northwest range of Pacifastacus leniusculus. Freshwater Biology 57: 1823–1838.pl_PL
dc.referencesPilgrim EM, Blum MJ, Reusser DA, Lee H, Darling JA (2013) Geographic range and structure of cryptic genetic diversity among Pacific North American populations of the non-native amphipod Grandidierella japonica. Biological Invasions 15: 2415–2428.pl_PL
dc.referencesGrabowski M, Rewicz T, Bacela-Spychalska K, Konopacka A, Mamos T, et al. (2012) Cryptic invasion of Baltic lowlands by freshwater amphipod of Pontic origin. Aquatic Invasions 7: 337–346.pl_PL
dc.referencesBrown JE, Stepien CA (2008) Ancient divisions, recent expansions: phylogeography and population genetics of the round goby Apollonia melanostoma. Molecular Ecology 17: 2598–2615. doi: 10.1111/ j.1365-294X.2008.03777.x PMID: 18466236pl_PL
dc.referencesMuirhead JR, Gray DK, Kelly DW, Ellis SM, Heath DD, et al. (2008) Identifying the source of species invasions: sampling intensity vs. genetic diversity. Molecular Ecology 17: 1020–1035. doi: 10.1111/j. 1365-294X.2008.03669.x PMID: 18261046pl_PL
dc.referencesRosenthal DM, Ramakrishnan AP, Cruzan MB (2008) Evidence for multiple sources of invasion and intraspecific hybridization in Brachypodium sylvaticum (Hudson) Beauv. in North America. Molecular Ecology 17: 4657–4669. doi: 10.1111/j.1365-294X.2008.03844.x PMID: 18627455pl_PL
dc.referencesZhan AB, Perepelizin PV, Ghabooli S, Paolucci E, Sylvester F, et al. (2012) Scale-dependent post-establishment spread and genetic diversity in an invading mollusc in South America. Diversity and Distributions 18: 1042–1055.pl_PL
dc.referencesAstanei I, Gosling E, Wilson J, Powell E (2005) Genetic variability and phylogeography of the invasive zebra mussel, Dreissena polymorpha (Pallas). Molecular Ecology 14: 1655–1666. PMID: 15836640pl_PL
dc.referencesDybdahl MF, Drown DM (2011) The absence of genotypic diversity in a successful parthenogenetic invader. Biological Invasions 13: 1663–1672.pl_PL
dc.referencesDybdahl MF, Drown DM (2011) The absence of genotypic diversity in a successful parthenogenetic invader. Biological Invasions 13: 1663–1672.pl_PL
dc.referencesDiez-del-Molino D, Carmona-Catot G, Araguas RM, Vidal O, Sanz N, et al. (2013) Gene Flow and Maintenance of Genetic Diversity in Invasive Mosquitofish (Gambusia holbrooki). Plos One 8. doi: 10. 1371/journal.pone.0082806 PMID: 24482673pl_PL
dc.referencesGillis NK, Walters LJ, Fernandes FC, Hoffman EA (2009) Higher genetic diversity in introduced than in native populations of the mussel Mytella charruana: evidence of population admixture at introduction sites. Diversity and Distributions 15: 784–795pl_PL
dc.referencesAyres D, Schierenbeck K, Ellstrand N (2009) Introduction to "Ecological and Evolutionary Consequences after Invaders Hybridize". Biological Invasions 11: 1087–1088.pl_PL
dc.referencesBenvenuto C, Cheyppe-Buchmann S, Bermond G, Ris N, Fauvergue X (2012) Intraspecific hybridization, life history strategies and potential invasion success in a parasitoid wasp. Evolutionary Ecology 26: 1311–1329.pl_PL
dc.referencesFacon B, Jarne P, Pointier JP, David P (2005) Hybridization and invasiveness in the freshwater snail Melanoides tuberculata: hybrid vigour is more important than increase in genetic variance. Journal of Evolutionary Biology 18: 524–535. PMID: 15842482pl_PL
dc.referencesLuquet E, Vorburger C, Hervant F, Joly P, Kaufmann B, et al. (2011) Invasiveness of an introduced species: the role of hybridization and ecological constraints. Biological Invasions 13: 1901–1915pl_PL
dc.referencesMatsukura K, Okuda M, Cazzaniga NJ, Wada T (2013) Genetic exchange between two freshwater apple snails, Pomacea canaliculata and Pomacea maculata invading East and Southeast Asia. Biological Invasions 15: 2039–2048.pl_PL
dc.referencesMeraner A, Venturi A, Ficetola GF, Rossi S, Candiotto A, et al. (2013) Massive invasion of exotic Barbus barbus and introgressive hybridization with endemic Barbus plebejus in Northern Italy: where, how and why? Molecular Ecology 22: 5295–5312. doi: 10.1111/mec.12470 PMID: 24103005pl_PL
dc.referencesMuhlfeld CC, Kalinowski ST, McMahon TE, Taper ML, Painter S, et al. (2009) Hybridization rapidly reduces fitness of a native trout in the wild. Biology Letters 5: 328–331. doi: 10.1098/rsbl.2009.0033 PMID: 19324629pl_PL
dc.referencesBącela KO, Grabowski M, Konopacka A (2008) Dikerogammarus villosus (Sowinsky, 1894) (Crustacea Amphipoda) enters Vistula—the biggest river in the Baltic basin. Aquatic Invasions 3: 95–98.pl_PL
dc.referencesBącela-Spychalska K, Grabowski M, Rewicz T, Konopacka A, Wattier R (2013) The "killer shrimp' Dikerogammarus villosus (Crustacea, Amphipoda) invading Alpine lakes: overland transport by recreational boats and scuba-diving gear as potential entry vectors? Aquatic Conservation-Marine and Freshwater Ecosystems 23: 606–618pl_PL
dc.referencesBollache L, Devin S, Wattier R, Chovet M, Beisel JN, et al. (2004) Rapid range extension of the PontoCaspian amphipod Dikerogammarus villosus in France: potential consequences. Archiv Fur Hydrobiologie 160: 57–66.pl_PL
dc.referencesCasellato S, Visentin A, La Piana G (2007) The predatory impact of Dikerogammarus villosus, a danger for fish. In: Gherardi F, editor. Biological invaders in inland waters: profiles, distribution, and threats. Dordrecht, The Netherlands: Springer. pp. 495–506.pl_PL
dc.referencesDick JTA, Platvoet D, Kelly DW (2002) Predatory impact of the freshwater invader Dikerogammarus villosus (Crustacea: Amphipoda). Canadian Journal of Fisheries and Aquatic Sciences 59: 1078– 1084.pl_PL
dc.referencesMacNeil C, Platvoet D (2005) The predatory impact of the freshwater invader Dikerogammarus villosus on native Gammarus pulex (Crustacea: Amphipoda); influences of differential microdistribution and food resources. Journal of Zoology 267: 31–38.pl_PL
dc.referencesvan Riel MC, van der Velde G, Rajagopal S, Marguillier S, Dehairs F, et al. (2006) Trophic relationships in the Rhine food web during invasion and after establishment of the Ponto-Caspian invader Dikerogammarus villosus. Hydrobiologia 565: 39–58.pl_PL
dc.referencesBrooks SJ, Platvoet D, Mills CL (2008) Cation regulation and alteration of water permeability in the amphipod Dikerogammarus villosus: an indicator of invasion potential. Fundamental and Applied Limnology 172: 183–189.pl_PL
dc.referencesBruijs MCM, Kelleher B, van der Velde G, de Vaate AB (2001) Oxygen consumption, temperature and salinity tolerance of the invasive amphipod Dikerogammarus villosus: indicators of further dispersal via ballast water transport. Archiv Fur Hydrobiologie 152: 633–646.pl_PL
dc.referencesPiscart C, Kefford BJ, Beisel JN (2011) Are salinity tolerances of non-native macroinvertebrates in France an indicator of potential for their translocation in a new area? Limnologica 41: 107–112.pl_PL
dc.referencesWijnhoven S, van Riel MC, van der Velde G (2003) Exotic and indigenous freshwater gammarid species: physiological tolerance to water temperature in relation to ionic content of the water. Aquatic Ecology 37: 151–158.pl_PL
dc.referencesDevin S, Piscart C, Beisel JN, Moreteau JC (2004) Life history traits of the invader Dikerogammarus villosus (Crustacea: Amphipoda) in the Moselle River, France. International Review of Hydrobiology 89: 21–34.pl_PL
dc.referencesGrabowski M, Bącela K, Konopacka A (2007a) How to be an invasive gammarid (Amphipoda: Gammaroidea)-comparison of life history traits. Hydrobiologia 590: 75–84pl_PL
dc.referencesPöckl M (2007) Strategies of a successful new invader in European fresh waters: fecundity and reproductive potential of the Ponto-Caspian amphipod Dikerogammarus villosus in the Austrian Danube, compared with the indigenous Gammarus fossarum and G. roeseli. Freshwater Biology 52: 50–63.pl_PL
dc.referencesPöckl M (2009) Success of the invasive Ponto-Caspian amphipod Dikerogammarus villosus by life history traits and reproductive capacity. Biological Invasions 11: 2021–2041.pl_PL
dc.referencesCristescu MEA, Witt JDS, Grigorovich IA, Hebert PDN, MacIsaac HJ (2004) Dispersal of the PontoCaspian amphipod Echinogammarus ischnus: Invasion waves from the Pleistocene to the present. Heredity 92: 197–203. PMID: 14981532pl_PL
dc.referencesOhayon JL, Stepien CA (2007) Genetic and biogeographic relationships of the racer goby Neogobius gymnotrachelus (Gobiidae: Teleostei) from introduced and native Eurasian locations. Journal of Fish Biology 71: 360–370.pl_PL
dc.referencesRewicz T, Grabowski M, MacNeil C, Bacela-Spychalska K (2014a) The profile of a ‘perfect’ invader – the case of killer shrimp, Dikerogammarus villosus. Aquatic Invasions 9: 267–288pl_PL
dc.referencesGrabowski M, Jażdżewski K, Konopacka A (2007b) Alien Crustacea in Polish waters – Amphipoda. Aquatic Invasions 2: 25–38.pl_PL
dc.referencesAudzijonyte A, Wittmann KJ, Ovcarenko I, Vainola R (2009) Invasion phylogeography of the PontoCaspian crustacean Limnomysis benedeni dispersing across Europe. Diversity and Distributions 15: 346–355.pl_PL
dc.referencesMüller JC, Schramm S, Seitz A (2002) Genetic and morphological differentiation of Dikerogammarus invaders and their invasion history in Central Europe. Freshwater Biology 47: 2039–2048.pl_PL
dc.referencesWattier RA, Beguet J, Gaillard M, Muller JC, Bollache L, et al. (2006) Molecular markers for systematic identification and population genetics of the invasive Ponto-Caspian freshwater gammarid Dikerogammarus villosus (Crustacea, Amphipoda). Molecular Ecology Notes 6: 487–489.pl_PL
dc.referencesWattier RA, Haine ER, Beguet J, Martin G, Bollache L, et al. (2007) No genetic bottleneck or associated microparasite loss in invasive populations of a freshwater amphipod. Oikos 116: 1941–1953.pl_PL
dc.referencesMacNeil C, Platvoet D, Dick JTA, Fielding N, Constable A, et al. (2010) The Ponto-Caspian ‘killer shrimp’, Dikerogammarus villosus (Sowinsky, 1894), invades the British Isles. Aquatic Invasions 5: 441–445.pl_PL
dc.referencesFolmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular marine biology and biotechnology 3: 294–299. PMID: 7881515pl_PL
dc.referencesHou ZG, Fu JH, Li SQ (2007) A molecular phylogeny of the genus Gammarus (Crustacea: Amphipoda) based on mitochondrial and nuclear gene sequences. Molecular Phylogenetics and Evolution 45: 596–611. PMID: 17686635pl_PL
dc.referencesChenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, et al. (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Research 31: 3497–3500. PMID: 12824352pl_PL
dc.referencesLibrado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452. doi: 10.1093/bioinformatics/btp187 PMID: 19346325pl_PL
dc.referencesRewicz T, Wattier R, Rigaud T, Bacela-Spychalska K, Grabowski M (2014b) Isolation and characterization of 8 microsatellite loci for the “killer shrimp”, an invasive Ponto-Caspian amphipod Dikerogammarus villosus (Crustacea: Amphipoda). Molecular Biology Reports:pl_PL
dc.referencesExcoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564–567. doi: 10. 1111/j.1755-0998.2010.02847.x PMID: 21565059pl_PL
dc.referencesTamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30: 2725–2729. doi: 10.1093/molbev/mst197 PMID: 24132122pl_PL
dc.referencesBaele G, Li WLS, Drummond AJ, Suchard MA, Lemey P (2013) Accurate Model Selection of Relaxed Molecular Clocks in Bayesian Phylogenetics. Molecular Biology and Evolution 30: 239–243. doi: 10. 1093/molbev/mss243 PMID: 23090976pl_PL
dc.referencesDrummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 1969–1973. doi: 10.1093/molbev/mss075 PMID: 22367748pl_PL
dc.referencesHou ZG, Li JB, Li SQ (2014) Diversification of low dispersal crustaceans through mountain uplift: a case study of Gammarus (Amphipoda: Gammaridae) with descriptions of four novel species. Zoological Journal of the Linnean Society 170: 591–633.pl_PL
dc.referencesNei M, Kumar S (2000) Molecular Evolution and Phylogenetics. New York: Oxford University Press. 333 p.pl_PL
dc.referencesNei M, Kumar S (2000) Molecular Evolution and Phylogenetics. New York: Oxford University Press. 333 p.pl_PL
dc.referencesHeled J, Drummond AJ (2008) Bayesian inference of population size history from multiple loci. Bmc Evolutionary Biology 8. doi: 10.1186/1471-2148-8-345 PMID: 19113997pl_PL
dc.referencesLeberg PL (2002) Estimating allelic richness: Effects of sample size and bottlenecks. Molecular Ecology 11: 2445–2449. PMID: 12406254pl_PL
dc.referencesKalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Molecular Ecology Notes 5: 187–189.pl_PL
dc.referencesStatSoft Inc. S (2011) STATISTICA (data analysis software system), version 10. www.statsoft.compl_PL
dc.referencesGoudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices. 2.9.3 ed. http://www2.unil.ch/popgen/softwares/fstat.htm.pl_PL
dc.referencesTamura K, Nei M (1993) Estimation of the Number of Nucleotide Substitutions in the Control Region of Mitochondrial-DNA in Humans and Chimpanzees. Molecular Biology and Evolution 10: 512–526. PMID: 8336541pl_PL
dc.referencesWeir BS, Cockerham CC (1984) Estimating F-Statistics for the Analysis of Population-Structure. Evolution 38: 1358–1370pl_PL
dc.referencesPritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945–959. PMID: 10835412pl_PL
dc.referencesEvanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611–2620. PMID: 15969739pl_PL
dc.referencesRousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145: 1219–1228. PMID: 9093870pl_PL
dc.referencesRaymond M, Rousset F (1995) Genepop (Version-1.2)—Population-Genetics Software for Exact Tests and Ecumenicism. Journal of Heredity 86: 248–249pl_PL
dc.referencesCristescu MEA, Hebert PDN, Onciu TM (2003) Phylogeography of Ponto-Caspian crustaceans: A benthic-planktonic comparison. Molecular Ecology 12: 985–996. PMID: 12753217pl_PL
dc.referencesAudzijonyte A, Daneliya ME, Vainola R (2006) Comparative phylogeography of Ponto-Caspian mysid crustaceans: isolation and exchange among dynamic inland sea basins. Molecular Ecology 15: 2969–2984. PMID: 16911214pl_PL
dc.referencesNeilson ME, Stepien CA (2011) Historic speciation and recent colonization of Eurasian monkey gobies (Neogobius fluviatilis and N. pallasi) revealed by DNA sequences, microsatellites, and morphology. Diversity and Distributions 17: 688–702.pl_PL
dc.referencesMamos T, Wattier R, Majda A, Sket B, Grabowski M (2014) Morphological vs. molecular delineation of taxa across montane regions in Europe: the case study of Gammarus balcanicus Schaferna, 1922(Crustacea: Amphipoda). Journal of Zoological Systematics and Evolutionary Research 52: 237– 248.pl_PL
dc.referencesWysocka A, Grabowski M, Sworobowicz L, Mamos T, Burzynski A, et al. (2014) Origin of the Lake Ohrid gammarid species flock: ancient local phylogenetic lineage diversification. Journal of Biogeography 41: 1758–1768.pl_PL
dc.referencesCosta FO, deWaard JR, Boutillier J, Ratnasingham S, Dooh RT, et al. (2007) Biological identifications through DNA barcodes: the case of the Crustacea. Canadian Journal of Fisheries and Aquatic Sciences 64: 272–295.pl_PL
dc.referencesAudzijonyte A, Wittmann KJ, Vainola R (2008) Tracing recent invasions of the Ponto-Caspian mysid shrimp Hemimysis anomala across Europe and to North America with mitochondrial DNA. Diversity and Distributions 14: 179–186.pl_PL
dc.referencesMordukhai-Boltovskoi FD (1960) Caspian fauna in the Azov and Black Sea Basin. Moscow: Izdatelstvo Akademii Nauk SSSR. PMID: 13831310pl_PL
dc.referencesNahavandi N, Ketmaier V, Plath M, Tiedemann R (2013) Diversification of Ponto-Caspian aquatic fauna: Morphology and molecules retrieve congruent evolutionary relationships in Pontogammarus maeoticus (Amphipoda: Pontogammaridae). Molecular Phylogenetics and Evolution 69: 1063–1076. doi: 10.1016/j.ympev.2013.05.021 PMID: 23764337pl_PL
dc.referencesBadertscher S, Fleitmann D, Cheng H, Edwards RL, Gokturk OM, et al. (2011) Pleistocene water intrusions from the Mediterranean and Caspian seas into the Black Sea. Nature Geoscience 4: 236– 239.pl_PL
dc.referencesDumont HJ (2000) Endemism in the Ponto-Caspian fauna, with special emphasis on the Onychopoda (Crustacea). Advances in Ecological Research, Vol 31 31: 181–196.pl_PL
dc.referencesKonikov E, Likhodedova O, Pedan G (2007) Paleogeographic reconstructions of sea-level change and coastline migration on the northwestern Black Sea shelf over the past 18 kyr. Quaternary International 167: 49–60.pl_PL
dc.referencesPopescu I, Lericolais G, Panin N, Normand A, Dinu C, et al. (2004) The Danube submarine canyon (Black Sea): morphology and sedimentary processes. Marine Geology 206: 249–265.pl_PL
dc.referencesBij de Vaate A, Jazdzewski K, Ketelaars HAM, Gollasch S, Van der Velde G (2002) Geographical patterns in range extension of Ponto-Caspian macroinvertebrate species in Europe. Canadian Journal of Fisheries and Aquatic Sciences 59: 1159–1174.pl_PL
dc.referencesJażdżewski K (1980) Range extensions of some gammaridean species in European inland waters caused by human activity. Crustaceana Supplement 6: 84–107.pl_PL
dc.referencesKolbe JJ, Glor RE, Schettino LR, Lara AC, Larson A, et al. (2007) Multiple sources, admixture, and genetic variation in introduced Anolis lizard populations. Conservation Biology 21: 1612–1625. doi: 10. 1111/j.1523-1739.2007.00826.x PMID: 18173485pl_PL
dc.referencesLeuven RSEW, van der Velde G, Baijens I, Snijders J, van der Zwart C, et al. (2009) The river Rhine: a global highway for dispersal of aquatic invasive species. Biological Invasions 11: 1989–2008.pl_PL
dc.referencesMacneil C, Platvoet D (2013) Could artificial structures such as fish passes facilitate the establishment and spread of the ‘killer shrimp’ Dikerogammarus villosus (Crustacea: Amphipoda) in river systems? Aquatic Conservation-Marine and Freshwater Ecosystems 23: 667–677.pl_PL
dc.references. Badtke M (2006) Kanał Bydgoski. Bydgoszcz: EKO-BAD Wydawnictwa Regionalne. 116 p.pl_PL
dc.referencesBossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, et al. (2005) Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144: 1–11. PMID: 15891837pl_PL
dc.referencesHassan M, Bonhomme F (2005) No reduction in neutral variability of mitochondrial and nuclear genes for a Lessepsian migrant, Upeneus moluccensis. Journal of Fish Biology 66: 865–870.pl_PL
dc.referencesStepien CA, Brown JE, Neilson ME, Tumeo MA (2005) Genetic diversity of invasive species in the Great Lakes versus their Eurasian source populations: Insights for risk analysis. Risk Analysis 25: 1043–1060. PMID: 16268948pl_PL
dc.referencesHupało K, Rewicz T, Bącela-Spychalska K, Konopacka A, Grabowski M (2014) First record of the killer shrimp, Dikerogammarus villosus (Sowinsky, 1894), in the Váh River, Slovakia. Lauterbornia 77: 9–13.pl_PL
dc.referencesGallardo B, Errea MP, Aldridge DC (2012) Application of bioclimatic models coupled with network analysis for risk assessment of the killer shrimp, Dikerogammarus villosus, in Great Britain. Biological Invasions 14: 1265–1278.pl_PL
dc.referencesMacNeil C, Boets P, Lock K, Goethals PLM (2013) Potential effects of the invasive ‘killer shrimp’ (Dikerogammarus villosus) on macroinvertebrate assemblages and biomonitoring indices. Freshwater Biology 58: 171–182.pl_PL
dc.referencesAgency E (2012) Invasive Shrimp, Dikerogammarus villosus Briefing Note 5. 1–7.pl_PL
dc.referencesBoets P, Pauwels IS, Lock K, Goethals PLM (2013) Using an integrated modelling approach for risk assessment of the ‘killer shrimp’ Dikerogammarus villosus. River Research and Applications: n/a-n/a.pl_PL
dc.referencesGallardo B, Aldridge DC (2013a) Evaluating the combined threat of climate change and biological invasions on endangered species. Biological Conservation 160: 225–233.pl_PL
dc.referencesGallardo B, Aldridge DC (2013b) The ‘dirty dozen’: socio-economic factors amplify the invasion potential of 12 high-risk aquatic invasive species in Great Britain and Ireland. Journal of Applied Ecology 50: 757–766.pl_PL
dc.referencesGallardo B, Aldridge DC (2013c) Priority setting for invasive species management: risk assessment of Ponto-Caspian invasive species into Great Britain. Ecological Applications 23: 352–364. PMID: 23634587pl_PL
dc.referencesAnderson LG, White PCL, Stebbing PD, Stentiford GD, Dunn AM (2014) Biosecurity and Vector Behaviour: Evaluating the Potential Threat Posed by Anglers and Canoeists as Pathways for the Spread of Invasive Non-Native Species and Pathogens. Plos One 9. doi: 10.1371/journal.pone.0115916 PMID: 25551830pl_PL
dc.referencesGrabowski M, Bącela K, Konopacka A, Jażdżewski K (2009) Salinity-related distribution of alien amphipods in rivers provides refugia for native species. Biological Invasions 11: 2107–2117.pl_PL
dc.referencesRicciardi II, MacIsaac HJ (2000) Recent mass invasion of the North American Great Lakes by PontoCaspian species. Trends Ecol Evol 15: 62–65. PMID: 10652557pl_PL
dc.referencesVanderploeg HA, Nalepa TF, Jude DJ, Mills EL, Holeck KT, et al. (2002) Dispersal and emerging ecological impacts of Ponto-Caspian species in the Laurentian Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences 59: 1209–1228.pl_PL
dc.contributor.authorEmailtomek.rewicz@gmail.compl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 3.0 Polska
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 3.0 Polska