dc.contributor.author | Rewicz, Tomasz | |
dc.contributor.author | Wattier, Remi | |
dc.contributor.author | Grabowski, Michal | |
dc.contributor.author | Rigaud, Thierry | |
dc.contributor.author | Bącela-Spychalska, Karolina | |
dc.date.accessioned | 2015-04-21T11:04:08Z | |
dc.date.available | 2015-04-21T11:04:08Z | |
dc.date.issued | 2015-02-18 | |
dc.identifier.issn | 1932-6203 | |
dc.identifier.uri | http://hdl.handle.net/11089/8074 | |
dc.description.abstract | The amphipod Dikerogammarus villosus has colonized most of the European main inland water bodies in less than 20 years, having deteriorating effect on the local benthic communities. Our aim was to reveal the species phylogeography in the native Black Sea area, to define the source populations for the colonization routes in continental Europe and for the newly established UK populations. We tested for the loss of genetic diversity between source and invasive populations as well as along invasion route. We tested also for isolation by distance. Thirty three native and invasive populations were genotyped for mtDNA (COI, 16S) and seven polymorphic nuclear microsatellites to assess cryptic diversity (presence of deeply divergent lineages), historical demography, level of diversity within lineage (e.g., number of alleles), and population structure. A wide range of methods was used, including minimum spanning network, molecular clock, Bayesian clustering and Mantel test. Our results identified that sea level and salinity changes during Pleistocene impacted the species phylogeography in the Black Sea native region with four differentiated populations inhabiting, respectively, the Dnieper, Dniester, Danube deltas and Durungol liman. The invasion of continental Europe is associated with two sources, i.e., the Danube and Dnieper deltas, which gave origin to two independent invasion routes (Western and Eastern) for which no loss of diversity and no isolation by distance were observed. The UK population has originated in the Western Route and, despite very recent colonization, no drastic loss of diversity was observed. The results show that the invasion of the killer shrimp is not associated with the costs of loosing genetic diversity, which may contribute to the success of this invader in the newly colonized areas. Additionally, while it has not yet occurred, it might be expected that future interbreeding between the genetically diversified populations from two independent invasion routes will potentially even enhance this success. | pl_PL |
dc.language.iso | en | pl_PL |
dc.relation.ispartofseries | PLoS One;10(2) | |
dc.rights | Uznanie autorstwa 3.0 Polska | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/pl/ | * |
dc.title | Out of the Black Sea: Phylogeography of the Invasive Killer Shrimp Dikerogammarus villosus across Europe | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 1-20 | pl_PL |
dc.contributor.authorAffiliation | Rewicz Tomasz, University of Lodz, Department of Invertebrate Zoology and Hydrobiology | pl_PL |
dc.contributor.authorAffiliation | Wattier Remi, Université de Bourgogne, Equipe Ecologie Evolutive | pl_PL |
dc.contributor.authorAffiliation | Grabowski, Michał, University of Lodz, Department of Invertebrate Zoology and Hydrobiology | pl_PL |
dc.contributor.authorAffiliation | Rigaud Thierry, Université de Bourgogne, Equipe Ecologie Evolutive | pl_PL |
dc.contributor.authorAffiliation | Bącela-Spychalska Karolina, University of Lodz, Department of Invertebrate Zoology and Hydrobiology | pl_PL |
dc.references | Lambertini M, Leape J, Marton-Lefevre J, Mitter-Meier RA, Rose M, et al. (2011) Invasives: A Major Conservation Threat. Science 333: 404–405. doi: 10.1126/science.333.6041.404-a PMID: 21778381 | pl_PL |
dc.references | Richardson DM, Ricciardi A (2013) Misleading criticisms of invasion science: a field guide. Diversity and Distributions 19: 1461–1467 | pl_PL |
dc.references | Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, et al. (2013) Impacts of biological invasions: what's what and the way forward. Trends in Ecology & Evolution 28: 58–66. doi: 10.1016/j.cub.2014. 11.067 PMID: 25619764 | pl_PL |
dc.references | Paolucci EM, MacIsaac HJ, Ricciardi A (2013) Origin matters: alien consumers inflict greater damage on prey populations than do native consumers. Diversity and Distributions 19: 988–995. | pl_PL |
dc.references | van Riel MC, Healy EP, van der Velde G, de Vaate AB (2007) Interference competition among native and invader amphipods. Acta Oecologica-International Journal of Ecology 31: 282–289. | pl_PL |
dc.references | van Riel MC, van der Velde G, de Vaate AB (2009) Interference competition between alien invasive gammaridean species. Biological Invasions 11: 2119–2132. | pl_PL |
dc.references | Tompkins DM, Poulin R (2006) Parasites and Biological Invasions. In: Allen RD, Lee WG, editors. Biological Invasions in New Zealand. Berlin, Heidelberg: Springer. pp. 67–86. | pl_PL |
dc.references | Zaiko A, Daunys D, Olenin S (2009) Habitat engineering by the invasive zebra mussel Dreissena polymorpha (Pallas) in a boreal coastal lagoon: impact on biodiversity. Helgoland Marine Research 63: 85–94. | pl_PL |
dc.references | Estoup A, Guillemaud T (2010) Reconstructing routes of invasion using genetic data: why, how and so what? Molecular Ecology 19: 4113–4130. doi: 10.1111/j.1365-294X.2010.04773.x PMID: 20723048 | pl_PL |
dc.references | Fitzpatrick BM, Fordyce JA, Niemiller ML, Reynolds RG (2012) What can DNA tell us about biological invasions? Biological Invasions 14: 245–253. | pl_PL |
dc.references | Bastrop R, Jurss K, Sturmbauer C (1998) Cryptic species in a marine polychaete and their independent introduction from North America to Europe. Molecular Biology and Evolution 15: 97–103. PMID: 9491608 | pl_PL |
dc.references | Larson ER, Abbott CL, Usio N, Azuma N, Wood KA, et al. (2012) The signal crayfish is not a single species: cryptic diversity and invasions in the Pacific Northwest range of Pacifastacus leniusculus. Freshwater Biology 57: 1823–1838. | pl_PL |
dc.references | Pilgrim EM, Blum MJ, Reusser DA, Lee H, Darling JA (2013) Geographic range and structure of cryptic genetic diversity among Pacific North American populations of the non-native amphipod Grandidierella japonica. Biological Invasions 15: 2415–2428. | pl_PL |
dc.references | Grabowski M, Rewicz T, Bacela-Spychalska K, Konopacka A, Mamos T, et al. (2012) Cryptic invasion of Baltic lowlands by freshwater amphipod of Pontic origin. Aquatic Invasions 7: 337–346. | pl_PL |
dc.references | Brown JE, Stepien CA (2008) Ancient divisions, recent expansions: phylogeography and population genetics of the round goby Apollonia melanostoma. Molecular Ecology 17: 2598–2615. doi: 10.1111/ j.1365-294X.2008.03777.x PMID: 18466236 | pl_PL |
dc.references | Muirhead JR, Gray DK, Kelly DW, Ellis SM, Heath DD, et al. (2008) Identifying the source of species invasions: sampling intensity vs. genetic diversity. Molecular Ecology 17: 1020–1035. doi: 10.1111/j. 1365-294X.2008.03669.x PMID: 18261046 | pl_PL |
dc.references | Rosenthal DM, Ramakrishnan AP, Cruzan MB (2008) Evidence for multiple sources of invasion and intraspecific hybridization in Brachypodium sylvaticum (Hudson) Beauv. in North America. Molecular Ecology 17: 4657–4669. doi: 10.1111/j.1365-294X.2008.03844.x PMID: 18627455 | pl_PL |
dc.references | Zhan AB, Perepelizin PV, Ghabooli S, Paolucci E, Sylvester F, et al. (2012) Scale-dependent post-establishment spread and genetic diversity in an invading mollusc in South America. Diversity and Distributions 18: 1042–1055. | pl_PL |
dc.references | Astanei I, Gosling E, Wilson J, Powell E (2005) Genetic variability and phylogeography of the invasive zebra mussel, Dreissena polymorpha (Pallas). Molecular Ecology 14: 1655–1666. PMID: 15836640 | pl_PL |
dc.references | Dybdahl MF, Drown DM (2011) The absence of genotypic diversity in a successful parthenogenetic invader. Biological Invasions 13: 1663–1672. | pl_PL |
dc.references | Dybdahl MF, Drown DM (2011) The absence of genotypic diversity in a successful parthenogenetic invader. Biological Invasions 13: 1663–1672. | pl_PL |
dc.references | Diez-del-Molino D, Carmona-Catot G, Araguas RM, Vidal O, Sanz N, et al. (2013) Gene Flow and Maintenance of Genetic Diversity in Invasive Mosquitofish (Gambusia holbrooki). Plos One 8. doi: 10. 1371/journal.pone.0082806 PMID: 24482673 | pl_PL |
dc.references | Gillis NK, Walters LJ, Fernandes FC, Hoffman EA (2009) Higher genetic diversity in introduced than in native populations of the mussel Mytella charruana: evidence of population admixture at introduction sites. Diversity and Distributions 15: 784–795 | pl_PL |
dc.references | Ayres D, Schierenbeck K, Ellstrand N (2009) Introduction to "Ecological and Evolutionary Consequences after Invaders Hybridize". Biological Invasions 11: 1087–1088. | pl_PL |
dc.references | Benvenuto C, Cheyppe-Buchmann S, Bermond G, Ris N, Fauvergue X (2012) Intraspecific hybridization, life history strategies and potential invasion success in a parasitoid wasp. Evolutionary Ecology 26: 1311–1329. | pl_PL |
dc.references | Facon B, Jarne P, Pointier JP, David P (2005) Hybridization and invasiveness in the freshwater snail Melanoides tuberculata: hybrid vigour is more important than increase in genetic variance. Journal of Evolutionary Biology 18: 524–535. PMID: 15842482 | pl_PL |
dc.references | Luquet E, Vorburger C, Hervant F, Joly P, Kaufmann B, et al. (2011) Invasiveness of an introduced species: the role of hybridization and ecological constraints. Biological Invasions 13: 1901–1915 | pl_PL |
dc.references | Matsukura K, Okuda M, Cazzaniga NJ, Wada T (2013) Genetic exchange between two freshwater apple snails, Pomacea canaliculata and Pomacea maculata invading East and Southeast Asia. Biological Invasions 15: 2039–2048. | pl_PL |
dc.references | Meraner A, Venturi A, Ficetola GF, Rossi S, Candiotto A, et al. (2013) Massive invasion of exotic Barbus barbus and introgressive hybridization with endemic Barbus plebejus in Northern Italy: where, how and why? Molecular Ecology 22: 5295–5312. doi: 10.1111/mec.12470 PMID: 24103005 | pl_PL |
dc.references | Muhlfeld CC, Kalinowski ST, McMahon TE, Taper ML, Painter S, et al. (2009) Hybridization rapidly reduces fitness of a native trout in the wild. Biology Letters 5: 328–331. doi: 10.1098/rsbl.2009.0033 PMID: 19324629 | pl_PL |
dc.references | Bącela KO, Grabowski M, Konopacka A (2008) Dikerogammarus villosus (Sowinsky, 1894) (Crustacea Amphipoda) enters Vistula—the biggest river in the Baltic basin. Aquatic Invasions 3: 95–98. | pl_PL |
dc.references | Bącela-Spychalska K, Grabowski M, Rewicz T, Konopacka A, Wattier R (2013) The "killer shrimp' Dikerogammarus villosus (Crustacea, Amphipoda) invading Alpine lakes: overland transport by recreational boats and scuba-diving gear as potential entry vectors? Aquatic Conservation-Marine and Freshwater Ecosystems 23: 606–618 | pl_PL |
dc.references | Bollache L, Devin S, Wattier R, Chovet M, Beisel JN, et al. (2004) Rapid range extension of the PontoCaspian amphipod Dikerogammarus villosus in France: potential consequences. Archiv Fur Hydrobiologie 160: 57–66. | pl_PL |
dc.references | Casellato S, Visentin A, La Piana G (2007) The predatory impact of Dikerogammarus villosus, a danger for fish. In: Gherardi F, editor. Biological invaders in inland waters: profiles, distribution, and threats. Dordrecht, The Netherlands: Springer. pp. 495–506. | pl_PL |
dc.references | Dick JTA, Platvoet D, Kelly DW (2002) Predatory impact of the freshwater invader Dikerogammarus villosus (Crustacea: Amphipoda). Canadian Journal of Fisheries and Aquatic Sciences 59: 1078– 1084. | pl_PL |
dc.references | MacNeil C, Platvoet D (2005) The predatory impact of the freshwater invader Dikerogammarus villosus on native Gammarus pulex (Crustacea: Amphipoda); influences of differential microdistribution and food resources. Journal of Zoology 267: 31–38. | pl_PL |
dc.references | van Riel MC, van der Velde G, Rajagopal S, Marguillier S, Dehairs F, et al. (2006) Trophic relationships in the Rhine food web during invasion and after establishment of the Ponto-Caspian invader Dikerogammarus villosus. Hydrobiologia 565: 39–58. | pl_PL |
dc.references | Brooks SJ, Platvoet D, Mills CL (2008) Cation regulation and alteration of water permeability in the amphipod Dikerogammarus villosus: an indicator of invasion potential. Fundamental and Applied Limnology 172: 183–189. | pl_PL |
dc.references | Bruijs MCM, Kelleher B, van der Velde G, de Vaate AB (2001) Oxygen consumption, temperature and salinity tolerance of the invasive amphipod Dikerogammarus villosus: indicators of further dispersal via ballast water transport. Archiv Fur Hydrobiologie 152: 633–646. | pl_PL |
dc.references | Piscart C, Kefford BJ, Beisel JN (2011) Are salinity tolerances of non-native macroinvertebrates in France an indicator of potential for their translocation in a new area? Limnologica 41: 107–112. | pl_PL |
dc.references | Wijnhoven S, van Riel MC, van der Velde G (2003) Exotic and indigenous freshwater gammarid species: physiological tolerance to water temperature in relation to ionic content of the water. Aquatic Ecology 37: 151–158. | pl_PL |
dc.references | Devin S, Piscart C, Beisel JN, Moreteau JC (2004) Life history traits of the invader Dikerogammarus villosus (Crustacea: Amphipoda) in the Moselle River, France. International Review of Hydrobiology 89: 21–34. | pl_PL |
dc.references | Grabowski M, Bącela K, Konopacka A (2007a) How to be an invasive gammarid (Amphipoda: Gammaroidea)-comparison of life history traits. Hydrobiologia 590: 75–84 | pl_PL |
dc.references | Pöckl M (2007) Strategies of a successful new invader in European fresh waters: fecundity and reproductive potential of the Ponto-Caspian amphipod Dikerogammarus villosus in the Austrian Danube, compared with the indigenous Gammarus fossarum and G. roeseli. Freshwater Biology 52: 50–63. | pl_PL |
dc.references | Pöckl M (2009) Success of the invasive Ponto-Caspian amphipod Dikerogammarus villosus by life history traits and reproductive capacity. Biological Invasions 11: 2021–2041. | pl_PL |
dc.references | Cristescu MEA, Witt JDS, Grigorovich IA, Hebert PDN, MacIsaac HJ (2004) Dispersal of the PontoCaspian amphipod Echinogammarus ischnus: Invasion waves from the Pleistocene to the present. Heredity 92: 197–203. PMID: 14981532 | pl_PL |
dc.references | Ohayon JL, Stepien CA (2007) Genetic and biogeographic relationships of the racer goby Neogobius gymnotrachelus (Gobiidae: Teleostei) from introduced and native Eurasian locations. Journal of Fish Biology 71: 360–370. | pl_PL |
dc.references | Rewicz T, Grabowski M, MacNeil C, Bacela-Spychalska K (2014a) The profile of a ‘perfect’ invader – the case of killer shrimp, Dikerogammarus villosus. Aquatic Invasions 9: 267–288 | pl_PL |
dc.references | Grabowski M, Jażdżewski K, Konopacka A (2007b) Alien Crustacea in Polish waters – Amphipoda. Aquatic Invasions 2: 25–38. | pl_PL |
dc.references | Audzijonyte A, Wittmann KJ, Ovcarenko I, Vainola R (2009) Invasion phylogeography of the PontoCaspian crustacean Limnomysis benedeni dispersing across Europe. Diversity and Distributions 15: 346–355. | pl_PL |
dc.references | Müller JC, Schramm S, Seitz A (2002) Genetic and morphological differentiation of Dikerogammarus invaders and their invasion history in Central Europe. Freshwater Biology 47: 2039–2048. | pl_PL |
dc.references | Wattier RA, Beguet J, Gaillard M, Muller JC, Bollache L, et al. (2006) Molecular markers for systematic identification and population genetics of the invasive Ponto-Caspian freshwater gammarid Dikerogammarus villosus (Crustacea, Amphipoda). Molecular Ecology Notes 6: 487–489. | pl_PL |
dc.references | Wattier RA, Haine ER, Beguet J, Martin G, Bollache L, et al. (2007) No genetic bottleneck or associated microparasite loss in invasive populations of a freshwater amphipod. Oikos 116: 1941–1953. | pl_PL |
dc.references | MacNeil C, Platvoet D, Dick JTA, Fielding N, Constable A, et al. (2010) The Ponto-Caspian ‘killer shrimp’, Dikerogammarus villosus (Sowinsky, 1894), invades the British Isles. Aquatic Invasions 5: 441–445. | pl_PL |
dc.references | Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular marine biology and biotechnology 3: 294–299. PMID: 7881515 | pl_PL |
dc.references | Hou ZG, Fu JH, Li SQ (2007) A molecular phylogeny of the genus Gammarus (Crustacea: Amphipoda) based on mitochondrial and nuclear gene sequences. Molecular Phylogenetics and Evolution 45: 596–611. PMID: 17686635 | pl_PL |
dc.references | Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, et al. (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Research 31: 3497–3500. PMID: 12824352 | pl_PL |
dc.references | Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452. doi: 10.1093/bioinformatics/btp187 PMID: 19346325 | pl_PL |
dc.references | Rewicz T, Wattier R, Rigaud T, Bacela-Spychalska K, Grabowski M (2014b) Isolation and characterization of 8 microsatellite loci for the “killer shrimp”, an invasive Ponto-Caspian amphipod Dikerogammarus villosus (Crustacea: Amphipoda). Molecular Biology Reports: | pl_PL |
dc.references | Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564–567. doi: 10. 1111/j.1755-0998.2010.02847.x PMID: 21565059 | pl_PL |
dc.references | Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30: 2725–2729. doi: 10.1093/molbev/mst197 PMID: 24132122 | pl_PL |
dc.references | Baele G, Li WLS, Drummond AJ, Suchard MA, Lemey P (2013) Accurate Model Selection of Relaxed Molecular Clocks in Bayesian Phylogenetics. Molecular Biology and Evolution 30: 239–243. doi: 10. 1093/molbev/mss243 PMID: 23090976 | pl_PL |
dc.references | Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 1969–1973. doi: 10.1093/molbev/mss075 PMID: 22367748 | pl_PL |
dc.references | Hou ZG, Li JB, Li SQ (2014) Diversification of low dispersal crustaceans through mountain uplift: a case study of Gammarus (Amphipoda: Gammaridae) with descriptions of four novel species. Zoological Journal of the Linnean Society 170: 591–633. | pl_PL |
dc.references | Nei M, Kumar S (2000) Molecular Evolution and Phylogenetics. New York: Oxford University Press. 333 p. | pl_PL |
dc.references | Nei M, Kumar S (2000) Molecular Evolution and Phylogenetics. New York: Oxford University Press. 333 p. | pl_PL |
dc.references | Heled J, Drummond AJ (2008) Bayesian inference of population size history from multiple loci. Bmc Evolutionary Biology 8. doi: 10.1186/1471-2148-8-345 PMID: 19113997 | pl_PL |
dc.references | Leberg PL (2002) Estimating allelic richness: Effects of sample size and bottlenecks. Molecular Ecology 11: 2445–2449. PMID: 12406254 | pl_PL |
dc.references | Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Molecular Ecology Notes 5: 187–189. | pl_PL |
dc.references | StatSoft Inc. S (2011) STATISTICA (data analysis software system), version 10. www.statsoft.com | pl_PL |
dc.references | Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices. 2.9.3 ed. http://www2.unil.ch/popgen/softwares/fstat.htm. | pl_PL |
dc.references | Tamura K, Nei M (1993) Estimation of the Number of Nucleotide Substitutions in the Control Region of Mitochondrial-DNA in Humans and Chimpanzees. Molecular Biology and Evolution 10: 512–526. PMID: 8336541 | pl_PL |
dc.references | Weir BS, Cockerham CC (1984) Estimating F-Statistics for the Analysis of Population-Structure. Evolution 38: 1358–1370 | pl_PL |
dc.references | Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945–959. PMID: 10835412 | pl_PL |
dc.references | Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611–2620. PMID: 15969739 | pl_PL |
dc.references | Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145: 1219–1228. PMID: 9093870 | pl_PL |
dc.references | Raymond M, Rousset F (1995) Genepop (Version-1.2)—Population-Genetics Software for Exact Tests and Ecumenicism. Journal of Heredity 86: 248–249 | pl_PL |
dc.references | Cristescu MEA, Hebert PDN, Onciu TM (2003) Phylogeography of Ponto-Caspian crustaceans: A benthic-planktonic comparison. Molecular Ecology 12: 985–996. PMID: 12753217 | pl_PL |
dc.references | Audzijonyte A, Daneliya ME, Vainola R (2006) Comparative phylogeography of Ponto-Caspian mysid crustaceans: isolation and exchange among dynamic inland sea basins. Molecular Ecology 15: 2969–2984. PMID: 16911214 | pl_PL |
dc.references | Neilson ME, Stepien CA (2011) Historic speciation and recent colonization of Eurasian monkey gobies (Neogobius fluviatilis and N. pallasi) revealed by DNA sequences, microsatellites, and morphology. Diversity and Distributions 17: 688–702. | pl_PL |
dc.references | Mamos T, Wattier R, Majda A, Sket B, Grabowski M (2014) Morphological vs. molecular delineation of taxa across montane regions in Europe: the case study of Gammarus balcanicus Schaferna, 1922(Crustacea: Amphipoda). Journal of Zoological Systematics and Evolutionary Research 52: 237– 248. | pl_PL |
dc.references | Wysocka A, Grabowski M, Sworobowicz L, Mamos T, Burzynski A, et al. (2014) Origin of the Lake Ohrid gammarid species flock: ancient local phylogenetic lineage diversification. Journal of Biogeography 41: 1758–1768. | pl_PL |
dc.references | Costa FO, deWaard JR, Boutillier J, Ratnasingham S, Dooh RT, et al. (2007) Biological identifications through DNA barcodes: the case of the Crustacea. Canadian Journal of Fisheries and Aquatic Sciences 64: 272–295. | pl_PL |
dc.references | Audzijonyte A, Wittmann KJ, Vainola R (2008) Tracing recent invasions of the Ponto-Caspian mysid shrimp Hemimysis anomala across Europe and to North America with mitochondrial DNA. Diversity and Distributions 14: 179–186. | pl_PL |
dc.references | Mordukhai-Boltovskoi FD (1960) Caspian fauna in the Azov and Black Sea Basin. Moscow: Izdatelstvo Akademii Nauk SSSR. PMID: 13831310 | pl_PL |
dc.references | Nahavandi N, Ketmaier V, Plath M, Tiedemann R (2013) Diversification of Ponto-Caspian aquatic fauna: Morphology and molecules retrieve congruent evolutionary relationships in Pontogammarus maeoticus (Amphipoda: Pontogammaridae). Molecular Phylogenetics and Evolution 69: 1063–1076. doi: 10.1016/j.ympev.2013.05.021 PMID: 23764337 | pl_PL |
dc.references | Badertscher S, Fleitmann D, Cheng H, Edwards RL, Gokturk OM, et al. (2011) Pleistocene water intrusions from the Mediterranean and Caspian seas into the Black Sea. Nature Geoscience 4: 236– 239. | pl_PL |
dc.references | Dumont HJ (2000) Endemism in the Ponto-Caspian fauna, with special emphasis on the Onychopoda (Crustacea). Advances in Ecological Research, Vol 31 31: 181–196. | pl_PL |
dc.references | Konikov E, Likhodedova O, Pedan G (2007) Paleogeographic reconstructions of sea-level change and coastline migration on the northwestern Black Sea shelf over the past 18 kyr. Quaternary International 167: 49–60. | pl_PL |
dc.references | Popescu I, Lericolais G, Panin N, Normand A, Dinu C, et al. (2004) The Danube submarine canyon (Black Sea): morphology and sedimentary processes. Marine Geology 206: 249–265. | pl_PL |
dc.references | Bij de Vaate A, Jazdzewski K, Ketelaars HAM, Gollasch S, Van der Velde G (2002) Geographical patterns in range extension of Ponto-Caspian macroinvertebrate species in Europe. Canadian Journal of Fisheries and Aquatic Sciences 59: 1159–1174. | pl_PL |
dc.references | Jażdżewski K (1980) Range extensions of some gammaridean species in European inland waters caused by human activity. Crustaceana Supplement 6: 84–107. | pl_PL |
dc.references | Kolbe JJ, Glor RE, Schettino LR, Lara AC, Larson A, et al. (2007) Multiple sources, admixture, and genetic variation in introduced Anolis lizard populations. Conservation Biology 21: 1612–1625. doi: 10. 1111/j.1523-1739.2007.00826.x PMID: 18173485 | pl_PL |
dc.references | Leuven RSEW, van der Velde G, Baijens I, Snijders J, van der Zwart C, et al. (2009) The river Rhine: a global highway for dispersal of aquatic invasive species. Biological Invasions 11: 1989–2008. | pl_PL |
dc.references | Macneil C, Platvoet D (2013) Could artificial structures such as fish passes facilitate the establishment and spread of the ‘killer shrimp’ Dikerogammarus villosus (Crustacea: Amphipoda) in river systems? Aquatic Conservation-Marine and Freshwater Ecosystems 23: 667–677. | pl_PL |
dc.references | . Badtke M (2006) Kanał Bydgoski. Bydgoszcz: EKO-BAD Wydawnictwa Regionalne. 116 p. | pl_PL |
dc.references | Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, et al. (2005) Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144: 1–11. PMID: 15891837 | pl_PL |
dc.references | Hassan M, Bonhomme F (2005) No reduction in neutral variability of mitochondrial and nuclear genes for a Lessepsian migrant, Upeneus moluccensis. Journal of Fish Biology 66: 865–870. | pl_PL |
dc.references | Stepien CA, Brown JE, Neilson ME, Tumeo MA (2005) Genetic diversity of invasive species in the Great Lakes versus their Eurasian source populations: Insights for risk analysis. Risk Analysis 25: 1043–1060. PMID: 16268948 | pl_PL |
dc.references | Hupało K, Rewicz T, Bącela-Spychalska K, Konopacka A, Grabowski M (2014) First record of the killer shrimp, Dikerogammarus villosus (Sowinsky, 1894), in the Váh River, Slovakia. Lauterbornia 77: 9–13. | pl_PL |
dc.references | Gallardo B, Errea MP, Aldridge DC (2012) Application of bioclimatic models coupled with network analysis for risk assessment of the killer shrimp, Dikerogammarus villosus, in Great Britain. Biological Invasions 14: 1265–1278. | pl_PL |
dc.references | MacNeil C, Boets P, Lock K, Goethals PLM (2013) Potential effects of the invasive ‘killer shrimp’ (Dikerogammarus villosus) on macroinvertebrate assemblages and biomonitoring indices. Freshwater Biology 58: 171–182. | pl_PL |
dc.references | Agency E (2012) Invasive Shrimp, Dikerogammarus villosus Briefing Note 5. 1–7. | pl_PL |
dc.references | Boets P, Pauwels IS, Lock K, Goethals PLM (2013) Using an integrated modelling approach for risk assessment of the ‘killer shrimp’ Dikerogammarus villosus. River Research and Applications: n/a-n/a. | pl_PL |
dc.references | Gallardo B, Aldridge DC (2013a) Evaluating the combined threat of climate change and biological invasions on endangered species. Biological Conservation 160: 225–233. | pl_PL |
dc.references | Gallardo B, Aldridge DC (2013b) The ‘dirty dozen’: socio-economic factors amplify the invasion potential of 12 high-risk aquatic invasive species in Great Britain and Ireland. Journal of Applied Ecology 50: 757–766. | pl_PL |
dc.references | Gallardo B, Aldridge DC (2013c) Priority setting for invasive species management: risk assessment of Ponto-Caspian invasive species into Great Britain. Ecological Applications 23: 352–364. PMID: 23634587 | pl_PL |
dc.references | Anderson LG, White PCL, Stebbing PD, Stentiford GD, Dunn AM (2014) Biosecurity and Vector Behaviour: Evaluating the Potential Threat Posed by Anglers and Canoeists as Pathways for the Spread of Invasive Non-Native Species and Pathogens. Plos One 9. doi: 10.1371/journal.pone.0115916 PMID: 25551830 | pl_PL |
dc.references | Grabowski M, Bącela K, Konopacka A, Jażdżewski K (2009) Salinity-related distribution of alien amphipods in rivers provides refugia for native species. Biological Invasions 11: 2107–2117. | pl_PL |
dc.references | Ricciardi II, MacIsaac HJ (2000) Recent mass invasion of the North American Great Lakes by PontoCaspian species. Trends Ecol Evol 15: 62–65. PMID: 10652557 | pl_PL |
dc.references | Vanderploeg HA, Nalepa TF, Jude DJ, Mills EL, Holeck KT, et al. (2002) Dispersal and emerging ecological impacts of Ponto-Caspian species in the Laurentian Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences 59: 1209–1228. | pl_PL |
dc.contributor.authorEmail | tomek.rewicz@gmail.com | pl_PL |