Pokaż uproszczony rekord

dc.contributor.authorBors, Dorota
dc.date.accessioned2015-04-14T11:21:28Z
dc.date.available2015-04-14T11:21:28Z
dc.date.issued2014-03-02
dc.identifier.issn1537-744X
dc.identifier.urihttp://hdl.handle.net/11089/7909
dc.description.abstractWe consider a class of partial differential equations with the fractional Laplacian and the homogeneous Dirichlet boundary data. Some sufficient condition under which the solutions of the equations considered depend continuously on parameters is stated. The application of the results to some optimal control problem is presented. The methods applied in the paper make use of the variational structure of the problem.pl_PL
dc.language.isoenpl_PL
dc.publisherHindawi Publishing Corporationpl_PL
dc.relation.ispartofseriesStability of Nonlinear Dirichlet BVPs Governed by Fractional Laplacian;Volume 2014
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.titleStability of Nonlinear Dirichlet BVPs Governed by Fractional Laplacianpl_PL
dc.typeArticlepl_PL
dc.page.number1-10pl_PL
dc.contributor.authorAffiliationUniversity of Lodz, Faculty of Mathematics and Computer Sciencepl_PL
dc.referencesD. Bors and S. Walczak, “Stability of nonlinear elliptic systems with distributed parameters and variable boundary data,” Journal of Computational and Applied Mathematics, vol. 164, no. 1, pp. 117–130, 2004.pl_PL
dc.referencesD. Bors and S. Walczak, “Optimal control elliptic systems with distributed and boundary controls,” Nonlinear Analysis,Theory, Methods and Applications, vol. 63, no. 5–7, pp. e1367–e1376, 2005.pl_PL
dc.referencesD. Bors and S. Walczak, “Multidimensional second order systems with controls,” Asian Journal of Control, vol. 12, no. 2, pp. 159–167, 2010.pl_PL
dc.referencesD. Applebaum, “L´evy processes—from probability to finance and quantum groups,” Notices of the American Mathematical Society, vol. 51, no. 11, pp. 1336–1347, 2004.pl_PL
dc.referencesK. Bogdan and T. Byczkowski, “Potential theory of Schr¨odinger operator based on fractional Laplacian,” Probablility and Mathematical Statistics, vol. 20, pp. 293–335, 2000.pl_PL
dc.referencesK. Bogdan, T. Byczkowski, T. Kulczycki, M. Ryznar, R. Song, and Z. Vondracek, Potential Theory of Stable Processes and Its Extensions, Lecture Notes in Mathematics, Springer, 2009.pl_PL
dc.referencesG. Autuori and P. Pucci, “Elliptic problems involving the fractional Laplacian in R,” Journal of Differential Equations, vol. 255, pp. 2340–2362, 2013.pl_PL
dc.referencesX. Cabr´e and Y. Sire, “Nonlinear equations for fractional Laplacians—I: regularity, maximum principles, and Hamiltonian estimates,” Annales de l’Institut Henri Poincare C.pl_PL
dc.referencesX. Cabr´e and Y. Sire, “Nonlinear equations for fractional Laplacians—II: existence, uniqueness, and qualitative properties of solutions,” To appear in Transactions of the American Mathematical Society.pl_PL
dc.referencesJ. J. V´azquez, “Nonlinear diffusion with fractional laplacian operators,” Nonlinear Partial Differential Equations, vol. 7, pp. 271–298, 2012.pl_PL
dc.referencesA. Bermudez and C. Saguez, “Optimal control of a Signorini problem,” SIAM Journal on Control and Optimization, vol. 25, no. 3, pp. 576–582, 1987.pl_PL
dc.referencesL. A. Caffarelli, “Further regularity for the Signorini problem,” Communications in Partial Differential Equations, vol. 4, pp. 1067–1075, 1979.pl_PL
dc.referencesL. A. Caffarelli, S. Salsa, and L. Silvestre, “Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian,” InventionesMathematicae, vol. 171, no. 2, pp. 425–461, 2008.pl_PL
dc.referencesL. A. Caffarelli and A. Vasseur, “Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation,” Annals of Mathematics, vol. 171, no. 3, pp. 1903–1930, 2010.pl_PL
dc.referencesD. Bors, “Global solvability of Hammerstein equations with applications to BVP involving fractional Laplacian,” Abstract and Applied Analysis, vol. 2013, Article ID 240863, 10 pages, 2013.pl_PL
dc.referencesR. Courant and D. Hilbert, Methods of Mathematical Physics, New York, NY, USA, 1962.pl_PL
dc.referencesL. Miller, “On the controllability of anomalous diffusions generated by the fractional Laplacian,” Mathematics of Control, Signals, and Systems, vol. 18, no. 3, pp. 260–271, 2006.pl_PL
dc.referencesB. Barrios, E. Colorado, A. de Pablo, and U. S´anchez, “On some critical problems for the fractional Laplacian operator,” Journal of Differential Equations, vol. 252, no. 11, pp. 6133–6162, 2012.pl_PL
dc.referencesC. Brandle, E. Colorado, A. de Pablo, and U. S´anchez, “A concave-convex elliptic problem involving the fractional Laplacian,” Proceedings of the Royal Society of Edinburgh A, vol. 143, pp. 39–71, 2013.pl_PL
dc.referencesX. Cabre and J. Tan, “Positive solutions of nonlinear problems involving the square root of the Laplacian,” Advances in Mathematics, vol. 224, no. 5, pp. 2052–2093, 2010.pl_PL
dc.referencesL. Caffarelli and L. Silvestre, “An extension problem related to the fractional Laplacian,”Communications in PartialDifferential Equations, vol. 32, no. 8, pp. 1245–1260, 2007.pl_PL
dc.referencesK. Bogdan and T. Byczkowski, “Potential theory for the -stable Schr¨odinger operator on bounded Lipschitz domains,” Studia Mathematica, vol. 133, no. 1, pp. 53–92, 1999.pl_PL
dc.referencesE. di Nezza, G. Palatucci, and E. Valdinoci, “Hitchhiker’s guide to the fractional Sobolev spaces,” Bulletin des Sciences Mathematiques, vol. 136, pp. 521–573, 2012.pl_PL
dc.referencesX. Ros-Oton and J. Serra, “The Dirichlet problem for the fractional Laplacian: regularity up to the boundary,” Journal de Math´ematiques Pures et Appliqu´ees, 2013.pl_PL
dc.referencesX. Ros-Oton and J. Serra, “Fractional Laplacian: Pohozhaev identity and nonexistence results,” Comptes Rendus de l’Acad´emie des Sciences, vol. 350, pp. 505–508, 2012.pl_PL
dc.referencesA. Kufner, O. John, and S. Fuˇcik, Function Spaces, Academia, Prague, Czech Republic, 1977.pl_PL
dc.referencesP. T. Gressman, “Fractional Poincare and logarithmic Sobolev inequalities for measure spaces,” Journal of Functional Analysis, vol. 265, pp. 867–889, 2013.pl_PL
dc.referencesX. Lu, “A note on fractional order Poincare’s inequalities,” Basque Centre for Applied Mathematics, Bilbao, Spain, http://www.bcamath.org/documentos public/archivos/publicaciones/ Poicare Academie.pdf.pl_PL
dc.referencesC.Mouhot, E. Russ, and Y. Sire, “Fractional Poincar´e inequalities for general measures,” Journal des Mathematiques Pures et Appliquees, vol. 95, no. 1, pp. 72–84, 2011.pl_PL
dc.referencesJ. Mawhin, Probl`emes de Dirichlet Variationnels Non-Lin´eaires, Les Presses de L’Universit´e de Montr´eal, Montr´eal, Canada, 1987.pl_PL
dc.referencesJ. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, New York, NY, USA, 1989.pl_PL
dc.referencesJ. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkh¨auser, Boston, Mass, USA, 1990.pl_PL
dc.referencesL. D. Berkovitz, “Lower semicontinuity of integral functionals,” Transactions of the AmericanMathematical Society, vol. 192, pp. 51–57, 1974.pl_PL
dc.referencesL. Cesari, Optimization: Theory and Applications, Springer,New York, NY, USA, 1983.pl_PL
dc.referencesA. D. Ioffe, “On lower semicontinuity of integral functionals,” SIAMJournal of Control and Optimization, vol. 15, pp. 991–1000, 1977.pl_PL
dc.referencesC. Olech, “Weak lower semicontinuity of integral functionals,” Journal of Optimization Theory and Applications, vol. 19, no. 1, pp. 3–16, 1976.pl_PL
dc.referencesD. Idczak and A. Rogowski, “On a generalization of Krasnoselskii’s theorem,” Journal of the Australian Mathematical Society, vol. 72, no. 3, pp. 389–394, 2002.pl_PL
dc.referencesM.Willem, Minimax Theorems, Birkhauser, Boston, Mass, USA, 1996.pl_PL
dc.referencesL. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, RI, USA, 1998.pl_PL
dc.referencesP. H. Rabinowitz, “Minimax methods in critical point theory with applications to differential equations,” in Proceedings of the CBMS Regional Conference, p. 65, American Mathematical Society, 1986.pl_PL
dc.referencesM. Struwe, Variational Methods, Springer, Berlin, Germany, 1990.pl_PL
dc.referencesS. K. Ingram, “Continuous dependence on parameters and boundary data for nonlinear two-point boundary value problems,” Pacific Journal ofMathematics, vol. 41, pp. 395–408, 1972.pl_PL
dc.referencesG. Klaasen, “Dependence of solutions on boundary conditions for second order ordinary differential equations,” Journal of Differential Equations, vol. 7, no. 1, pp. 24–33, 1970.pl_PL
dc.referencesA. Lepin andW. Ponomariev, “Continuous dependence of solutions of the boundary value problem for ordinary differential equations,” Differential Equations, vol. 9, pp. 626–629, 1973.pl_PL
dc.referencesS. Sędziwy, “Dependence of solutions on boundary data for a system of two ordinary differential equations,” Journal of Differential Equations, vol. 9, no. 2, pp. 381–389, 1971.pl_PL
dc.referencesN. Vasiliev and J. Klokov, Fundamentals of the Theory of Boundary Value Problems for Ordinary Differential Equations, Riga, 1978.pl_PL
dc.referencesO. A. Ole˘ınik, “On properties of solutions of certain boundary problems for equations of elliptic type,” Matematichesky Sbornik, vol. 30, pp. 695–702, 1952.pl_PL
dc.referencesB. Kok and F. D. Penning, “Continuous dependence of the solutions of elliptic boundary value problems on the coefficients, right hand sides and boundary conditions,” Quaestiones Mathematicae, vol. 4, pp. 167–183, 1981.pl_PL
dc.referencesD. Idczak, “Stability in semilinear problems,” Journal of Differential Equations, vol. 162, no. 1, pp. 64–90, 2000.pl_PL
dc.referencesS. Walczak, “On the continuous dependence on parameters of solutions of the Dirichlet problem,” Bulletin de la Classe des Sciences/Acad´emie Royale de Belgique, vol. 7–12, pp. 247–273, 1995.pl_PL
dc.referencesS. Walczak, “Superlinear variational and boundary value problems with parameters,” Nonlinear Analysis, Theory,Methods and Applications, vol. 43, no. 2, pp. 183–198, 2001.pl_PL
dc.referencesU. Ledzewicz and S. Walczak, “Optimal control of systems governed by some elliptic equations,” Discrete and Continuous Dynamical Systems, vol. 5, no. 2, pp. 279–290, 1999.pl_PL
dc.referencesS. Walczak, “Continuous dependence on parameters and boundary data for nonlinear PDE. Coercive case,” Diffrential and Integral Equations, vol. 11, pp. 35–46, 1998.pl_PL


Pliki tej pozycji

No Thumbnail [100%x80]
No Thumbnail [100%x80]

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 3.0 Polska
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 3.0 Polska