Show simple item record

dc.contributor.authorWłodarczyk, Kazimierz
dc.date.accessioned2015-04-13T09:01:10Z
dc.date.available2015-04-13T09:01:10Z
dc.date.issued2014-12-05
dc.identifier.issn1687-1812
dc.identifier.urihttp://hdl.handle.net/11089/7882
dc.description.abstractIn a quasi-gauge space (X,P) with quasi-gauge , using the left (right) -families of generalized quasi-pseudodistances on X (-families on X generalize quasi-gauge ), the left (right) quasi-distances DL−Jη ( DR−Jη) of Hausdorff type on 2X are defined, η∈{1,2,3}, the three kinds of left (right) set-valued contractions of Nadler type are constructed, and, for such contractions, the left (right) -convergence of dynamic processes starting at each point w0∈X is studied and the existence and localization of periodic and fixed point results are proved. As implications, two kinds of left (right) single-valued contractions of Banach type are defined, and, for such contractions, the left (right) -convergence of Picard iterations starting at each point w0∈X is studied, and existence, localization, periodic point, fixed point and uniqueness results are established. Appropriate tools and ideas of studying based on -families and also presented examples showed that the results: are new in quasi-gauge, topological, gauge, quasi-uniform and quasi-metric spaces; are new even in uniform and metric spaces; do not require completeness and Hausdorff properties of the spaces (X,P), continuity of contractions, closedness of values of set-valued contractions and properties DL−Jη(U,V)=DL−Jη(V,U) ( DR−Jη(U,V)=DR−Jη(V,U)) and DL−Jη(U,U)=0 ( DR−Jη(U,U)=0), η∈{1,2,3}, U,V∈2X; provide information concerning localizations of periodic and fixed points; and substantially generalize the well-known theorems of Nadler and Banach types.pl_PL
dc.description.sponsorshipPublikacja w ramach programu Springer Open Choice/Open Access finansowanego przez Ministerstwo Nauki i Szkolnictwa Wyższego i realizowanego w ramach umowy na narodową licencję akademicką na czasopisma Springer w latach 2010-2014.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringerpl_PL
dc.relation.ispartofseriesFixed Point Theory and Applications;2014:239
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.titleHausdorff quasi-distances, periodic and fixed points for Nadler type set-valued contractions in quasi-gauge spacespl_PL
dc.typeArticlepl_PL
dc.page.number1-27pl_PL
dc.contributor.authorAffiliationUniversity of Łódz, Department of Nonlinear Analysis, Faculty of Mathematics and Computer Sciencepl_PL
dc.referencesBanach, S: Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales. Fundam. Math. 3, 133-181 (1922)pl_PL
dc.referencesNadler, SB: Multi-valued contraction mappings. Pac. J. Math. 30, 475-488 (1969)pl_PL
dc.referencesAlemany, S, Romaguera, AS: On right K-sequentially complete quasi-metric spaces. Acta Math. Hung. 75, 267-278 (1997)pl_PL
dc.referencesAubin, JP, Frankowska, H: Set-Valued Analysis. Birkhäuser, Boston (1990)pl_PL
dc.referencesAubin, JP, Siegel, J: Fixed points and stationary points of dissipative multivalued maps. Proc. Am. Math. Soc. 78, 391-398 (1980)pl_PL
dc.referencesAydi, H, Abbas, M, Vetro, C: Partial Hausdorff metric and Nadler’s fixed point theorem on partial metric spaces. Topol. Appl. 159, 3234-3242 (2012)pl_PL
dc.referencesBenavides, TD, Ramírez, PL: Fixed point theorems for multivalued nonexpansive mappings satisfying inwardness conditions. J. Math. Anal. Appl. 291, 100-108 (2004)pl_PL
dc.referencesde Blasi, FS, Myjak, J, Reich, S, Zaslawski, AJ: Generic existence and approximation of fixed points for nonexpansive set-valued maps. Set-Valued Var. Anal. 17, 97-112 (2009)pl_PL
dc.referencesCaristi, J: Fixed point theorems for mappings satisfying inwardness conditions. Trans. Am. Math. Soc. 215, 241-251 (1976)pl_PL
dc.referencesCaristi, J, Kirk, WA: Geometric Fixed Point Theory and Inwardness Conditions. Lecture Notes in Math., vol. 490, pp. 74-83. Springer, Berlin (1975)pl_PL
dc.referencesCiric, L: Multi-valued nonlinear contraction mappings. Nonlinear Anal. 71, 2716-2723 (2009)pl_PL
dc.referencesCovitz, H, Nadler, SB: Multi-valued contraction mappings in generalized metric spaces. Isr. J. Math. 8, 5-11 (1970)pl_PL
dc.referencesEkeland, I: Remarques sur les problémes variationnels. I. C. R. Acad. Sci. Paris Sér. A-B 275, 1057-1059 (1972)pl_PL
dc.referencesEkeland, I: On the variational principle. J. Math. Anal. Appl. 47, 324-353 (1974)pl_PL
dc.referencesEkeland, I: Nonconvex minimization problems. Bull. Am. Math. Soc. 1, 443-474 (1979)pl_PL
dc.referencesEspínola, R, Petrusel, A: Existence and data dependence of fixed points for multivalued operators on gauge spaces. J. Math. Anal. Appl. 309, 420-432 (2005)pl_PL
dc.referencesEspínola, R, Kirk, WA: Set-valued contractions and fixed points. Nonlinear Anal. 54, 485-494 (2003)pl_PL
dc.referencesFeng, Y, Liu, S: Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings. J. Math. Anal. Appl. 317, 103-112 (2006)pl_PL
dc.referencesFrigon, M: Fixed point results for multivalued maps in metric spaces with generalized inwardness conditions. Fixed Point Theory Appl. 2010, Article ID 183217 (2010)pl_PL
dc.referencesFrigon, M: Fixed point results for generalized contractions in gauge spaces with applications. Proc. Am. Math. Soc. 128, 2957-2965 (2000)pl_PL
dc.referencesFrigon, M: Fixed point results for multivalued contractions on gauge spaces. In: Set-Valued Mappings with Applications in Nonlinear Analysis. Ser. Math. Anal. Appl., vol. 4, pp. 175-181. Taylor & Francis, London (2002)pl_PL
dc.referencesFrigon, M: Fixed point and continuation results for contractions in metric and gauge spaces. Banach Cent. Publ. 77, 89-114 (2007)pl_PL
dc.referencesKada, O, Suzuki, T, Takahashi, W: Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math. Jpn. 44, 381-391 (1996)pl_PL
dc.referencesKirk, WA: Fixed points of asymptotic contractions. J. Math. Anal. Appl. 277, 645-650 (2003)pl_PL
dc.referencesKikkawa, M, Suzuki, T: Three fixed point theorems for generalized contractions with constants in complete metric spaces. Nonlinear Anal. 69, 2942-2949 (2008)pl_PL
dc.referencesLeader, S, Hoyle, SL: Contractive fixed points. Fundam. Math. 87, 93-108 (1975)pl_PL
dc.referencesLin, L-J, Du, W-S: Ekeland’s variational principle, minimax theorems and existence of nonconvex equilibria in complete metric spaces. J. Math. Anal. Appl. 323, 360-370 (2006)pl_PL
dc.referencesMizoguchi, N, Takahashi, W: Fixed point theorems for multivalued mappings on complete metric spaces. J. Math. Anal. Appl. 141, 177-188 (1989)pl_PL
dc.referencesNadler, SB: Periodic points of multi-valued ε-contractive maps. Topol. Methods Nonlinear Anal. 22, 399-409 (2003)pl_PL
dc.referencesPathak, HK, Shahzad, N: Fixed point results for set-valued contractions by altering distances in complete metric spaces. Nonlinear Anal. 70, 2634-2641 (2009)pl_PL
dc.referencesPetrusel, G: Fixed point results for multivalued contractions on ordered gauge spaces. Cent. Eur. J. Math. 7, 520-528 (2009)pl_PL
dc.referencesQuantina, K, Kamran, T: Nadler’s type principle with hight order of convergence. Nonlinear Anal. 69, 4106-4120 (2008)pl_PL
dc.referencesReich, S: Fixed points of contractive functions. Boll. Unione Mat. Ital. 5, 26-42 (1972)pl_PL
dc.referencesReilly, IL: A generalized contraction principle. Bull. Aust. Math. Soc. 10, 349-363 (1974)pl_PL
dc.referencesReilly, IL, Subrahmanyam, PV, Vamanamurthy, MK: Cauchy sequences in quasi-pseudo-metric spaces. Monatshefte Math. 93, 127-140 (1982)pl_PL
dc.referencesSmithson, RE: Fixed points for contractive multifunctions. Proc. Am. Math. Soc. 27, 192-194 (1971)pl_PL
dc.referencesSuzuki, T: Generalized distance and existence theorems in complete metric spaces. J. Math. Anal. Appl. 253, 440-458 (2001)pl_PL
dc.referencesSuzuki, T: Several fixed point theorems concerning τ -distance. Fixed Point Theory Appl. 2004, 195-209 (2004)pl_PL
dc.referencesSuzuki, T: Several fixed point theorems in complete metric spaces. Yokohama Math. J. 44, 61-72 (1997)pl_PL
dc.referencesSuzuki, T: Mizoguchi-Takahashi’s fixed point theorem is a real generalization of Nadler’s. J. Math. Anal. Appl. 340, 752-755 (2008)pl_PL
dc.referencesSuzuki, T: Kannan mappings are contractive mappings in some sense. Comment. Math. 45, 43-56 (2005)pl_PL
dc.referencesTarafdar, E, Yuan, GX-Z: Set-valued contraction mapping principle. Appl. Math. Lett. 8, 79-81 (1995)pl_PL
dc.referencesTakahashi, W: Existence theorems generalizing fixed point theorems for multivalued mappings. In: Baillon, JB, Théra, M (eds.) Fixed Point Theory and Applications (Marseille, 1989). Pitman Res. Notes Math. Ser., vol. 252, pp. 397-406. Longman Sci. Tech., Harlow (1991)pl_PL
dc.referencesTarafdar, E: An approach to fixed-point theorems on uniform space. Trans. Am. Math. Soc. 191, 209-225 (1974)pl_PL
dc.referencesTataru, D: Viscosity solutions of Hamilton-Jacobi equations with unbounded nonlinear terms. J. Math. Anal. Appl. 163, 345-392 (1992)pl_PL
dc.referencesVályi, I: A general maximality principle and a fixed point theorem in uniform spaces. Period. Math. Hung. 16, 127-134 (1985)pl_PL
dc.referencesWłodarczyk, K, Plebaniak, R: Maximality principle and general results of Ekeland and Caristi types without lower semicontinuity assumptions in cone uniform spaces with generalized pseudodistances. Fixed Point Theory Appl. 2010, Article ID 175453 (2010)pl_PL
dc.referencesWłodarczyk, K, Plebaniak, R: Periodic point, endpoint, and convergence theorems for dissipative set-valued dynamic systems with generalized pseudodistances in cone uniform and uniform spaces. Fixed Point Theory Appl. 2010, Article ID 864536 (2010)pl_PL
dc.referencesWłodarczyk, K, Plebaniak, R, Obczynski, C: Convergence theorems, best approximation and best proximity for set-valued dynamic systems of relatively quasi-asymptotic contractions in cone uniform spaces. Nonlinear Anal. 72, 794-805 (2010)pl_PL
dc.referencesWłodarczyk, K, Plebaniak, R: Quasi-gauge spaces with generalized quasi-pseudodistances and periodic points of dissipative set-valued dynamic systems. Fixed Point Theory Appl. 2011, Article ID 712706 (2011)pl_PL
dc.referencesWłodarczyk, K, Plebaniak, R: Contractivity of Leader type and fixed points in uniform spaces with generalized pseudodistances. J. Math. Anal. Appl. 387, 533-541 (2012)pl_PL
dc.referencesWłodarczyk, K, Plebaniak, R: Generalized uniform spaces, uniformly locally contractive set-valued dynamic systems and fixed points. Fixed Point Theory Appl. 2012, Article ID 104 (2012)pl_PL
dc.referencesWłodarczyk, K, Plebaniak, R: Leader type contractions, periodic and fixed points and new completivity in quasi-gauge spaces with generalized quasi-pseudodistances. Topol. Appl. 159, 3504-3512 (2012)pl_PL
dc.referencesWłodarczyk, K, Plebaniak, R: Fixed points and endpoints of contractive set-valued maps in cone uniform spaces with generalized pseudodistances. Fixed Point Theory Appl. 2012, Article ID 176 (2012)pl_PL
dc.referencesWłodarczyk, K, Plebaniak, R: Asymmetric structures, discontinuous contractions and iterative approximation of fixed and periodic points. Fixed Point Theory Appl. 2013, Article ID 128 (2013)pl_PL
dc.referencesWłodarczyk, K, Plebaniak, R: Contractions of Banach, Tarafdar, Meir-Keeler, Ciri´c-Jachymski-Matkowski and Suzuki types and fixed points in uniform spaces with generalized pseudodistances. J. Math. Anal. Appl. 404, 338-350 (2013)pl_PL
dc.referencesWłodarczyk, K, Plebaniak, R: New completeness and periodic points of discontinuous contractions of Banach-type in quasi-gauge spaces without Hausdorff property. Fixed Point Theory Appl. 2013, Article ID 289 (2013)pl_PL
dc.referencesYuan, GX-Z: KKM Theory and Applications in Nonlinear Analysis. Dekker, New York (1999)pl_PL
dc.referencesZhong, C-H, Zhu, J, Zhao, P-H: An extension of multi-valued contraction mappings and fixed points. Proc. Am. Math. Soc. 128, 2439-2444 (1999)pl_PL
dc.referencesAubin, JP, Ekeland, JI: Applied Nonlinear Analysis. Wiley, New York (1984)pl_PL
dc.referencesDugundji, J: Topology. Allyn & Bacon, Boston (1966)pl_PL
dc.referencesReilly, IL: Quasi-gauge spaces. J. Lond. Math. Soc. 6, 481-487 (1973)pl_PL
dc.contributor.authorEmailwlkzxa@math.uni.lodz.plpl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 3.0 Polska
Except where otherwise noted, this item's license is described as Uznanie autorstwa 3.0 Polska