dc.contributor.author | Plebaniak, Robert | |
dc.date.accessioned | 2015-04-11T13:54:17Z | |
dc.date.available | 2015-04-11T13:54:17Z | |
dc.date.issued | 2014-02-14 | |
dc.identifier.issn | 1687-1812 | |
dc.identifier.uri | http://hdl.handle.net/11089/7868 | |
dc.description.abstract | In this paper, in b-metric space, we introduce the concept of b-generalized
pseudodistance which is an extension of the b-metric. Next, inspired by the ideas of
Nadler (Pac. J. Math. 30:475-488, 1969) and Abkar and Gabeleh (Rev. R. Acad. Cienc.
Exactas Fís. Nat., Ser. A Mat. 107(2):319-325, 2013), we define a new set-valued
non-self-mapping contraction of Nadler type with respect to this b-generalized
pseudodistance, which is a generalization of Nadler’s contraction. Moreover, we
provide the condition guaranteeing the existence of best proximity points for
T : A → 2B. A best proximity point theorem furnishes sufficient conditions that
ascertain the existence of an optimal solution to the problem of globally minimizing
the error inf{d(x, y) : y ∈ T(x)}, and hence the existence of a consummate approximate
solution to the equation T(x) = x. In other words, the best proximity points theorem
achieves a global optimal minimum of the map x → inf{d(x; y) : y ∈ T(x)} by
stipulating an approximate solution x of the point equation T(x) = x to satisfy the
condition that inf{d(x; y) : y ∈ T(x)} = dist(A; B). The examples which illustrate the main
result given. The paper includes also the comparison of our results with those existing
in the literature. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Springer | pl_PL |
dc.relation.ispartofseries | Fixed Point Theory and Applications;2014:39 | |
dc.rights | Uznanie autorstwa 3.0 Polska | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/pl/ | * |
dc.title | On best proximity points for set-valued contractions of Nadler type with respect to b-generalized pseudodistances in b-metric spaces | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 1-13 | pl_PL |
dc.contributor.authorAffiliation | University of Łódź, Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science | pl_PL |
dc.references | Banach, S: Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales. Fundam. Math. 3, 133-181 (1922) | pl_PL |
dc.references | Nadler, SB: Multi-valued contraction mappings. Pac. J. Math. 30, 475-488 (1969) | pl_PL |
dc.references | Abkar, A, Gabeleh, M: Best proximity points for asymptotic cyclic contraction mappings. Nonlinear Anal. 74, 7261-7268 (2011) | pl_PL |
dc.references | Abkar, A, Gabeleh, M: Generalized cyclic contractions in partially ordered metric spaces. Optim. Lett. 6(8), 1819-1830 (2012) | pl_PL |
dc.references | Abkar, A, Gabeleh, M: Global optimal solutions of noncyclic mappings in metric spaces. J. Optim. Theory Appl. 153(2), 298-305 (2012) | pl_PL |
dc.references | Al-Thagafi, MA, Shahzad, N: Convergence and existence results for best proximity points. Nonlinear Anal. 70, 3665-3671 (2009) | pl_PL |
dc.references | Suzuki, T, Kikkawa, M, Vetro, C: The existence of best proximity points in metric spaces with the property UC. Nonlinear Anal. 71, 2918-2926 (2009) | pl_PL |
dc.references | Di Bari, C, Suzuki, T, Vetro, C: Best proximity points for cyclic Meir-Keeler contractions. Nonlinear Anal. 69, 3790-3794 (2008) | pl_PL |
dc.references | Sankar Raj, V: A best proximity point theorem for weakly contractive non-self-mappings. Nonlinear Anal. 74, 4804-4808 (2011) | pl_PL |
dc.references | Derafshpour, M, Rezapour, S, Shahzad, N: Best proximity of cyclic ϕ-contractions in ordered metric spaces. Topol. Methods Nonlinear Anal. 37, 193-202 (2011) | pl_PL |
dc.references | Sadiq Basha, S: Best proximity points: global optimal approximate solutions. J. Glob. Optim. 49, 15-21 (2011) | pl_PL |
dc.references | Włodarczyk, K, Plebaniak, R, Obczynski, C: Convergence theorems, best approximation and best proximity for ´ set-valued dynamic systems of relatively quasi-asymptotic contractions in cone uniform spaces. Nonlinear Anal. 72, 794-805 (2010) | pl_PL |
dc.references | Abkar, A, Gabeleh, M: The existence of best proximity points for multivalued non-self-mappings. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 107(2), 319-325 (2013) | pl_PL |
dc.references | Berge, C: Topological Spaces. Oliver & Boyd, Edinburg (1963) | pl_PL |
dc.references | Czerwik, S: Nonlinear set-valued contraction mappings in b-metric spaces. Atti Semin. Mat. Fis. Univ. Modena 46(2), 263-276 (1998) | pl_PL |
dc.references | Berinde, V: Generalized contractions in quasimetric spaces. In: Seminar on Fixed Point Theory (Cluj-Napoca), vol. 3, pp. 3-9 (1993) | pl_PL |
dc.references | Boriceanu, M, Petru¸sel, A, Rus, IA: Fixed point theorems for some multivalued generalized contractions in b-metric spaces. Int. J. Math. Stat. 6(S10), 65-76 (2010) | pl_PL |
dc.references | Boriceanu, M, Bota, M, Petru¸sel, A: Multivalued fractals in b-metric spaces. Cent. Eur. J. Math. 8(2), 367-377 (2010) | pl_PL |
dc.references | Bota, M, Molnar, A, Varga, C: On Ekeland’s variational principle in b-metric spaces. Fixed Point Theory 12(1), 21-28 (2011) | pl_PL |
dc.references | Tataru, D: Viscosity solutions of Hamilton-Jacobi equations with unbounded nonlinear terms. J. Math. Anal. Appl. 163, 345-392 (1992) | pl_PL |
dc.references | Kada, O, Suzuki, T, Takahashi, W: Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math. Jpn. 44, 381-391 (1996) | pl_PL |
dc.references | Suzuki, T: Generalized distance and existence theorems in complete metric spaces. J. Math. Anal. Appl. 253, 440-458 (2011) | pl_PL |
dc.references | Lin, L-J, Du, W-S: Ekeland’s variational principle, minimax theorems and existence of nonconvex equilibria in complete metric spaces. J. Math. Anal. Appl. 323, 360-370 (2006) | pl_PL |
dc.references | Vályi, I: A general maximality principle and a fixed point theorem in uniform spaces. Period. Math. Hung. 16, 127-134 (1985) | pl_PL |
dc.references | Plebaniak, R: New generalized pseudodistance and coincidence point theorem in a b-metric space. Fixed Point Theory Appl. (2013). doi:10.1186/1687-1812-2013-270 | pl_PL |
dc.references | Klein, E, Thompson, AC: Theory of Correspondences: Including Applications to Mathematical Economics. Canadian Mathematical Society Series of Monographs and Advanced Texts. Wiley, New York (1984) | pl_PL |
dc.contributor.authorEmail | robpleb@math.uni.lodz.pl | pl_PL |