Pokaż uproszczony rekord

dc.contributor.authorPlebaniak, Robert
dc.date.accessioned2015-04-11T13:54:17Z
dc.date.available2015-04-11T13:54:17Z
dc.date.issued2014-02-14
dc.identifier.issn1687-1812
dc.identifier.urihttp://hdl.handle.net/11089/7868
dc.description.abstractIn this paper, in b-metric space, we introduce the concept of b-generalized pseudodistance which is an extension of the b-metric. Next, inspired by the ideas of Nadler (Pac. J. Math. 30:475-488, 1969) and Abkar and Gabeleh (Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 107(2):319-325, 2013), we define a new set-valued non-self-mapping contraction of Nadler type with respect to this b-generalized pseudodistance, which is a generalization of Nadler’s contraction. Moreover, we provide the condition guaranteeing the existence of best proximity points for T : A → 2B. A best proximity point theorem furnishes sufficient conditions that ascertain the existence of an optimal solution to the problem of globally minimizing the error inf{d(x, y) : y ∈ T(x)}, and hence the existence of a consummate approximate solution to the equation T(x) = x. In other words, the best proximity points theorem achieves a global optimal minimum of the map x → inf{d(x; y) : y ∈ T(x)} by stipulating an approximate solution x of the point equation T(x) = x to satisfy the condition that inf{d(x; y) : y ∈ T(x)} = dist(A; B). The examples which illustrate the main result given. The paper includes also the comparison of our results with those existing in the literature.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringerpl_PL
dc.relation.ispartofseriesFixed Point Theory and Applications;2014:39
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.titleOn best proximity points for set-valued contractions of Nadler type with respect to b-generalized pseudodistances in b-metric spacespl_PL
dc.typeArticlepl_PL
dc.page.number1-13pl_PL
dc.contributor.authorAffiliationUniversity of Łódź, Department of Nonlinear Analysis, Faculty of Mathematics and Computer Sciencepl_PL
dc.referencesBanach, S: Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales. Fundam. Math. 3, 133-181 (1922)pl_PL
dc.referencesNadler, SB: Multi-valued contraction mappings. Pac. J. Math. 30, 475-488 (1969)pl_PL
dc.referencesAbkar, A, Gabeleh, M: Best proximity points for asymptotic cyclic contraction mappings. Nonlinear Anal. 74, 7261-7268 (2011)pl_PL
dc.referencesAbkar, A, Gabeleh, M: Generalized cyclic contractions in partially ordered metric spaces. Optim. Lett. 6(8), 1819-1830 (2012)pl_PL
dc.referencesAbkar, A, Gabeleh, M: Global optimal solutions of noncyclic mappings in metric spaces. J. Optim. Theory Appl. 153(2), 298-305 (2012)pl_PL
dc.referencesAl-Thagafi, MA, Shahzad, N: Convergence and existence results for best proximity points. Nonlinear Anal. 70, 3665-3671 (2009)pl_PL
dc.referencesSuzuki, T, Kikkawa, M, Vetro, C: The existence of best proximity points in metric spaces with the property UC. Nonlinear Anal. 71, 2918-2926 (2009)pl_PL
dc.referencesDi Bari, C, Suzuki, T, Vetro, C: Best proximity points for cyclic Meir-Keeler contractions. Nonlinear Anal. 69, 3790-3794 (2008)pl_PL
dc.referencesSankar Raj, V: A best proximity point theorem for weakly contractive non-self-mappings. Nonlinear Anal. 74, 4804-4808 (2011)pl_PL
dc.referencesDerafshpour, M, Rezapour, S, Shahzad, N: Best proximity of cyclic ϕ-contractions in ordered metric spaces. Topol. Methods Nonlinear Anal. 37, 193-202 (2011)pl_PL
dc.referencesSadiq Basha, S: Best proximity points: global optimal approximate solutions. J. Glob. Optim. 49, 15-21 (2011)pl_PL
dc.referencesWłodarczyk, K, Plebaniak, R, Obczynski, C: Convergence theorems, best approximation and best proximity for ´ set-valued dynamic systems of relatively quasi-asymptotic contractions in cone uniform spaces. Nonlinear Anal. 72, 794-805 (2010)pl_PL
dc.referencesAbkar, A, Gabeleh, M: The existence of best proximity points for multivalued non-self-mappings. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 107(2), 319-325 (2013)pl_PL
dc.referencesBerge, C: Topological Spaces. Oliver & Boyd, Edinburg (1963)pl_PL
dc.referencesCzerwik, S: Nonlinear set-valued contraction mappings in b-metric spaces. Atti Semin. Mat. Fis. Univ. Modena 46(2), 263-276 (1998)pl_PL
dc.referencesBerinde, V: Generalized contractions in quasimetric spaces. In: Seminar on Fixed Point Theory (Cluj-Napoca), vol. 3, pp. 3-9 (1993)pl_PL
dc.referencesBoriceanu, M, Petru¸sel, A, Rus, IA: Fixed point theorems for some multivalued generalized contractions in b-metric spaces. Int. J. Math. Stat. 6(S10), 65-76 (2010)pl_PL
dc.referencesBoriceanu, M, Bota, M, Petru¸sel, A: Multivalued fractals in b-metric spaces. Cent. Eur. J. Math. 8(2), 367-377 (2010)pl_PL
dc.referencesBota, M, Molnar, A, Varga, C: On Ekeland’s variational principle in b-metric spaces. Fixed Point Theory 12(1), 21-28 (2011)pl_PL
dc.referencesTataru, D: Viscosity solutions of Hamilton-Jacobi equations with unbounded nonlinear terms. J. Math. Anal. Appl. 163, 345-392 (1992)pl_PL
dc.referencesKada, O, Suzuki, T, Takahashi, W: Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math. Jpn. 44, 381-391 (1996)pl_PL
dc.referencesSuzuki, T: Generalized distance and existence theorems in complete metric spaces. J. Math. Anal. Appl. 253, 440-458 (2011)pl_PL
dc.referencesLin, L-J, Du, W-S: Ekeland’s variational principle, minimax theorems and existence of nonconvex equilibria in complete metric spaces. J. Math. Anal. Appl. 323, 360-370 (2006)pl_PL
dc.referencesVályi, I: A general maximality principle and a fixed point theorem in uniform spaces. Period. Math. Hung. 16, 127-134 (1985)pl_PL
dc.referencesPlebaniak, R: New generalized pseudodistance and coincidence point theorem in a b-metric space. Fixed Point Theory Appl. (2013). doi:10.1186/1687-1812-2013-270pl_PL
dc.referencesKlein, E, Thompson, AC: Theory of Correspondences: Including Applications to Mathematical Economics. Canadian Mathematical Society Series of Monographs and Advanced Texts. Wiley, New York (1984)pl_PL
dc.contributor.authorEmailrobpleb@math.uni.lodz.plpl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 3.0 Polska
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 3.0 Polska