Show simple item record

dc.contributor.authorPlebaniak, Robert
dc.date.accessioned2015-04-11T13:54:17Z
dc.date.available2015-04-11T13:54:17Z
dc.date.issued2014-02-14
dc.identifier.issn1687-1812
dc.identifier.urihttp://hdl.handle.net/11089/7868
dc.description.abstractIn this paper, in b-metric space, we introduce the concept of b-generalized pseudodistance which is an extension of the b-metric. Next, inspired by the ideas of Nadler (Pac. J. Math. 30:475-488, 1969) and Abkar and Gabeleh (Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 107(2):319-325, 2013), we define a new set-valued non-self-mapping contraction of Nadler type with respect to this b-generalized pseudodistance, which is a generalization of Nadler’s contraction. Moreover, we provide the condition guaranteeing the existence of best proximity points for T : A → 2B. A best proximity point theorem furnishes sufficient conditions that ascertain the existence of an optimal solution to the problem of globally minimizing the error inf{d(x, y) : y ∈ T(x)}, and hence the existence of a consummate approximate solution to the equation T(x) = x. In other words, the best proximity points theorem achieves a global optimal minimum of the map x → inf{d(x; y) : y ∈ T(x)} by stipulating an approximate solution x of the point equation T(x) = x to satisfy the condition that inf{d(x; y) : y ∈ T(x)} = dist(A; B). The examples which illustrate the main result given. The paper includes also the comparison of our results with those existing in the literature.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringerpl_PL
dc.relation.ispartofseriesFixed Point Theory and Applications;2014:39
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.titleOn best proximity points for set-valued contractions of Nadler type with respect to b-generalized pseudodistances in b-metric spacespl_PL
dc.typeArticlepl_PL
dc.page.number1-13pl_PL
dc.contributor.authorAffiliationUniversity of Łódź, Department of Nonlinear Analysis, Faculty of Mathematics and Computer Sciencepl_PL
dc.referencesBanach, S: Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales. Fundam. Math. 3, 133-181 (1922)pl_PL
dc.referencesNadler, SB: Multi-valued contraction mappings. Pac. J. Math. 30, 475-488 (1969)pl_PL
dc.referencesAbkar, A, Gabeleh, M: Best proximity points for asymptotic cyclic contraction mappings. Nonlinear Anal. 74, 7261-7268 (2011)pl_PL
dc.referencesAbkar, A, Gabeleh, M: Generalized cyclic contractions in partially ordered metric spaces. Optim. Lett. 6(8), 1819-1830 (2012)pl_PL
dc.referencesAbkar, A, Gabeleh, M: Global optimal solutions of noncyclic mappings in metric spaces. J. Optim. Theory Appl. 153(2), 298-305 (2012)pl_PL
dc.referencesAl-Thagafi, MA, Shahzad, N: Convergence and existence results for best proximity points. Nonlinear Anal. 70, 3665-3671 (2009)pl_PL
dc.referencesSuzuki, T, Kikkawa, M, Vetro, C: The existence of best proximity points in metric spaces with the property UC. Nonlinear Anal. 71, 2918-2926 (2009)pl_PL
dc.referencesDi Bari, C, Suzuki, T, Vetro, C: Best proximity points for cyclic Meir-Keeler contractions. Nonlinear Anal. 69, 3790-3794 (2008)pl_PL
dc.referencesSankar Raj, V: A best proximity point theorem for weakly contractive non-self-mappings. Nonlinear Anal. 74, 4804-4808 (2011)pl_PL
dc.referencesDerafshpour, M, Rezapour, S, Shahzad, N: Best proximity of cyclic ϕ-contractions in ordered metric spaces. Topol. Methods Nonlinear Anal. 37, 193-202 (2011)pl_PL
dc.referencesSadiq Basha, S: Best proximity points: global optimal approximate solutions. J. Glob. Optim. 49, 15-21 (2011)pl_PL
dc.referencesWłodarczyk, K, Plebaniak, R, Obczynski, C: Convergence theorems, best approximation and best proximity for ´ set-valued dynamic systems of relatively quasi-asymptotic contractions in cone uniform spaces. Nonlinear Anal. 72, 794-805 (2010)pl_PL
dc.referencesAbkar, A, Gabeleh, M: The existence of best proximity points for multivalued non-self-mappings. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 107(2), 319-325 (2013)pl_PL
dc.referencesBerge, C: Topological Spaces. Oliver & Boyd, Edinburg (1963)pl_PL
dc.referencesCzerwik, S: Nonlinear set-valued contraction mappings in b-metric spaces. Atti Semin. Mat. Fis. Univ. Modena 46(2), 263-276 (1998)pl_PL
dc.referencesBerinde, V: Generalized contractions in quasimetric spaces. In: Seminar on Fixed Point Theory (Cluj-Napoca), vol. 3, pp. 3-9 (1993)pl_PL
dc.referencesBoriceanu, M, Petru¸sel, A, Rus, IA: Fixed point theorems for some multivalued generalized contractions in b-metric spaces. Int. J. Math. Stat. 6(S10), 65-76 (2010)pl_PL
dc.referencesBoriceanu, M, Bota, M, Petru¸sel, A: Multivalued fractals in b-metric spaces. Cent. Eur. J. Math. 8(2), 367-377 (2010)pl_PL
dc.referencesBota, M, Molnar, A, Varga, C: On Ekeland’s variational principle in b-metric spaces. Fixed Point Theory 12(1), 21-28 (2011)pl_PL
dc.referencesTataru, D: Viscosity solutions of Hamilton-Jacobi equations with unbounded nonlinear terms. J. Math. Anal. Appl. 163, 345-392 (1992)pl_PL
dc.referencesKada, O, Suzuki, T, Takahashi, W: Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math. Jpn. 44, 381-391 (1996)pl_PL
dc.referencesSuzuki, T: Generalized distance and existence theorems in complete metric spaces. J. Math. Anal. Appl. 253, 440-458 (2011)pl_PL
dc.referencesLin, L-J, Du, W-S: Ekeland’s variational principle, minimax theorems and existence of nonconvex equilibria in complete metric spaces. J. Math. Anal. Appl. 323, 360-370 (2006)pl_PL
dc.referencesVályi, I: A general maximality principle and a fixed point theorem in uniform spaces. Period. Math. Hung. 16, 127-134 (1985)pl_PL
dc.referencesPlebaniak, R: New generalized pseudodistance and coincidence point theorem in a b-metric space. Fixed Point Theory Appl. (2013). doi:10.1186/1687-1812-2013-270pl_PL
dc.referencesKlein, E, Thompson, AC: Theory of Correspondences: Including Applications to Mathematical Economics. Canadian Mathematical Society Series of Monographs and Advanced Texts. Wiley, New York (1984)pl_PL
dc.contributor.authorEmailrobpleb@math.uni.lodz.plpl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 3.0 Polska
Except where otherwise noted, this item's license is described as Uznanie autorstwa 3.0 Polska