Show simple item record

dc.contributor.authorŁuczak, Andrzej
dc.date.accessioned2015-04-11T13:35:36Z
dc.date.available2015-04-11T13:35:36Z
dc.date.issued2014-06-19
dc.identifier.issn1572-9281
dc.identifier.urihttp://hdl.handle.net/11089/7865
dc.description.abstractWe investigate cloning in the general operator algebra framework in arbitrary dimension assuming only positivity instead of strong positivity of the cloning operation, generalizing thus results obtained so far under that stronger assumption. The weaker positivity assumption turns out quite natural when considering cloning in the general C∗-algebra framework.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringer Baselpl_PL
dc.relation.ispartofseriesPositivity;
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.titleCloning by positive maps in von Neumann algebraspl_PL
dc.typeArticlepl_PL
dc.page.number1-16pl_PL
dc.contributor.authorAffiliationŁódź University, Faculty of Mathematics and Computer Sciencepl_PL
dc.referencesBarnum, H., Barrett, J., Leifer, M., Wilce, A.: Cloning and broadcasting in generic probability models.pl_PL
dc.referencesBarnum, H., Barrett, J., Leifer, M., Wilce, A.: Generalized no-broadcasting theorem. Phys. Rev. Lett. 99, 240501 (2007)pl_PL
dc.referencesBarnum, H., Caves, C.M., Fuchs, C.A., Jozsa, R., Schumacher, B.: Noncommuting mixed states cannot be broadcast Phys. Rev. Lett. 76(15), 2818–2821 (1996)pl_PL
dc.referencesBratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechnics I. Springer, Berlin (1987)pl_PL
dc.referencesDieks, D.: Communication by EPR devices. Phys. Lett. A 92(6), 271–272 (1982)pl_PL
dc.referencesKaniowski, K., Lubnauer, K., Łuczak, A.: Cloning and broadcasting in von Neumann algebras. preprintpl_PL
dc.referencesKaniowski, K., Lubnauer, K., Łuczak, A.: Cloning in C∗-algebras. preprintpl_PL
dc.referencesLindblad, G.: A general no-cloning theorem. Lett. Math. Phys. 47, 189–196 (1999)pl_PL
dc.referencesŁuczak, A.: Ergodic projection for quantum dynamical semigroups. Int. J. Theor. Phys. 34, 1533–1540 (1995)pl_PL
dc.referencesŁuczak, A.: Mixing and asymptotic properties of Markov semigroups on von Neumann algebras. Math. Z. 235, 615–626 (2000)pl_PL
dc.referencesStørmer, E.: Positive linear maps of operator algebras. Acta Math. 110, 233–278 (1963)pl_PL
dc.referencesTakesaki, M.: Theory of Operator Algebras I. Encyclopaedia of Mathematical Sciences, vol. 124. Springer, Berlin (2001)pl_PL
dc.referencesThomsen, K.E.: Invariant states for positive operator semigroups. Stud. Math. 81, 285–291 (1985)pl_PL
dc.referencesWooters, W.K., Zurek, W.H.: A single quantum state cannot be cloned. Nature 299, 802 (1982)pl_PL
dc.contributor.authorEmailanluczak@math.uni.lodz.plpl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 3.0 Polska
Except where otherwise noted, this item's license is described as Uznanie autorstwa 3.0 Polska