Pokaż uproszczony rekord

dc.contributor.authorAntczak, Tadeusz
dc.contributor.authorPitea, Ariana
dc.date.accessioned2015-04-09T09:45:08Z
dc.date.available2015-04-09T09:45:08Z
dc.date.issued2014-09-02
dc.identifier.issn1029-242X
dc.identifier.urihttp://hdl.handle.net/11089/7817
dc.description.abstractIn this paper, a new class of generalized of nonconvex multitime multiobjective variational problems is considered. We prove the sufficient optimality conditions for efficiency and proper efficiency in the considered multitime multiobjective variational problems with univex functionals. Further, for such vector variational problems, various duality results in the sense of Mond-Weir and in the sense of Wolfe are established under univexity. The results established in the paper extend and generalize results existing in the literature for such vector variational problems.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringerpl_PL
dc.relation.ispartofseriesJournal of Inequalities and Applications;2014: 333
dc.rightsAn error occurred on the license name.*
dc.rightsAn error occurred on the license name.*
dc.rights.uriAn error occurred getting the license - uri.*
dc.rights.uriAn error occurred getting the license - uri.*
dc.titleProper efficiency and duality for a new class of nonconvex multitime multiobjective variational problemspl_PL
dc.typeArticlepl_PL
dc.page.number1-20pl_PL
dc.contributor.authorAffiliationAntczak, Tadeusz, University of Łódz Faculty of Mathematics and Computer Sciencepl_PL
dc.contributor.authorAffiliationPitea, Ariana, ‘Politehnica’ of Bucharest, Faculty of Applied Sciences, Universitypl_PL
dc.referencesChinchuluun, A, Pardalos, PM: A survey of recent developments in multiobjective optimization. Ann. Oper. Res. 154, 29-50 (2007)pl_PL
dc.referencesAghezzaf, B, Khazafi, K: Sufficient conditions and duality for multiobjective variational problems with generalized B-invexity. Control Cybern. 33, 113-126 (2004)pl_PL
dc.referencesAhmad, I, Sharma, S: Sufficiency and duality for multiobjective variational control problems with generalized (F,α,ρ, θ)-V-convexity. Nonlinear Anal. 72, 2564-2579 (2010)pl_PL
dc.referencesArana-Jiménez, M, Rufián-Lizana, A, Ruiz-Garzón, G, Osuna-Gómez, R: Efficient solutions in V-KT-pseudoinvex multiobjective control problems: a characterization. Appl. Math. Comput. 215, 441-448 (2009)pl_PL
dc.referencesBector, CR, Husain, I: Duality for multiobjective variational problems. J. Math. Anal. Appl. 166, 214-229 (1992)pl_PL
dc.referencesBhatia, D, Mehra, A: Optimality conditions and duality for multiobjective variational problems with generalized B-invexity. J. Math. Anal. Appl. 234, 314-360 (1999)pl_PL
dc.referencesHachimi, M, Aghezzaf, B: Sufficiency and duality in multiobjective variational problems with generalized type I functions. J. Glob. Optim. 34, 191-218 (2006)pl_PL
dc.referencesMishra, SK, Mukherjee, RN: On efficiency and duality for multiobjective variational problems. J. Math. Anal. Appl. 187, 40-54 (1994)pl_PL
dc.referencesNahak, C, Nanda, S: Duality for multiobjective variational problems with invexity. Optimization 36, 235-248 (1996)pl_PL
dc.referencesNahak, C, Nanda, S: On efficiency and duality for multiobjective variational control problems with (F,ρ)-convexity. J. Math. Anal. Appl. 209, 415-434 (1997)pl_PL
dc.referencesNahak, C, Nanda, S: Sufficient optimality criteria and duality for multiobjective variational control problems with V-invexity. Nonlinear Anal. 66, 1513-1525 (2007)pl_PL
dc.referencesChinchuluun, A, Pardalos, PM, Migdalas, A, Pitsoulis, L (eds.): Pareto Optimality, Game Theory and Equilibria. Springer, New York (2008)pl_PL
dc.referencesUdri¸ste, C, ¸Tevy, I: Multitime Euler-Lagrange-Hamilton theory. WSEAS Trans. Math. 6, 701-709 (2007)pl_PL
dc.referencesPitea, A, Udri¸ste, C, Mititelu, ¸S: PDI&PDE-constrained optimization problems with curvilinear functional quotients as objective vectors. Balk. J. Geom. Appl. 14(2), 75-88 (2009)pl_PL
dc.referencesPitea, A, Udri¸ste, C, Mititelu, ¸S: New type dualities in PDI and PDE constrained optimization problems. J. Adv. Math. Stud. 2(2), 81-90 (2009)pl_PL
dc.referencesBector, CR, Suneja, SK, Gupta, S: Univex functions and univex nonlinear programming. In: Proceedings of the Administrative Sciences Association of Canada, pp. 115-124 (1992)pl_PL
dc.referencesHanson, MA: On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 80, 545-550 (1981)pl_PL
dc.referencesAntczak, T: An η-approximation approach in nonlinear vector optimization with univex functions. Asia-Pac. J. Oper. Res. 23, 525-542 (2006)pl_PL
dc.referencesPopa, M, Popa, M: Mangasarian type higher-order duality for a class of nondifferentiable mathematical programming. Rev. Roum. Math. Pures Appl. 49(2), 163-172 (2004)pl_PL
dc.referencesMishra, SK, Rueda, N, Giorgi, NG: Multiobjective programming under generalized type I univexity. An. Univ. Bucur., Mat. LII(2), 207-224 (2003)pl_PL
dc.referencesKhazafi, K, Rueda, N: Multiobjective variational programming under generalized type I univexity. J. Optim. Theory Appl. 142, 363-376 (2009)pl_PL
dc.referencesUdri¸ste, C, Dogaru, O, ¸Tevy, I: Null Lagrangian forms and Euler-Lagrange PDEs. J. Adv. Math. Stud. 1(1-2), 143-156 (2008)pl_PL
dc.referencesGeoffrion, AM: Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 22, 618-630 (1968)pl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord