Pokaż uproszczony rekord

dc.contributor.authorOrpel, Aleksandra
dc.date.accessioned2015-04-08T11:48:01Z
dc.date.available2015-04-08T11:48:01Z
dc.date.issued2014
dc.identifier.issn2300−6919
dc.identifier.urihttp://hdl.handle.net/11089/7784
dc.description.abstractWe deal with the existence and the continuous dependence of solutions on functional parameters for boundary valued problems containing the Sturm-Liouville equation. We apply these result to prove the existence of at least one solution for a certain class of optimal control problems.pl_PL
dc.language.isoenpl_PL
dc.publisherAGH University of Science and Technology Presspl_PL
dc.relation.ispartofseries0puscula Mathematica;34, no. 4
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.titleA note on the dependence of solutions on functional parameters for nonlinear sturm-liouville problemspl_PL
dc.typeArticlepl_PL
dc.page.number837–849pl_PL
dc.contributor.authorAffiliationUniversity of Łódź, Faculty of Mathematicspl_PL
dc.referencesT. Adamowicz, A. Kałamajska, On a variant of the maximum principle involving radial p-Laplacian with applications to nonlinear eigenvalue problems and nonexistence results, Topol. Methods Nonlinear Anal. 34 (2009) 1, 1–20.pl_PL
dc.referencesT. Adamowicz, A. Kałamajska, Maximum principles and nonexistence results for radial solutions to equations involving p-Laplacian, Math. Methods Appl. Sci. 33 (2010) 13, 1618–1627pl_PL
dc.referencesR.P. Agarwal, R.S. Grace, D. O’Regan, Oscilation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations, Dordrecht, Kluwer Academic, 2002.pl_PL
dc.referencesR. Dalmasso, Positive solutions of singular boundary value problems, Nonlinear Anal. 27 (1996) 6, 645–652.pl_PL
dc.referencesP. Eloe, J. Henderson, Uniqueness implies existence and uniqueness conditions for a class of (k + j)-point boundary value problems for nth order differential equations, Math. Nachr. 284 (2011) 2–3, 229–239.pl_PL
dc.referencesL. Erbe, T.S. Hassan, A. Peterson, Oscillation of second order neutral delay differential equations, Adv. Dyn. Syst. Appl. 3 (2008) 1, 53–71.pl_PL
dc.referencesA.F. Güvenilir, A. Zafer, Second order oscillation of forced functional differential equations with oscillatory potentials, Comput. Math. Appl. 51 (2006) 9–10, 1395–1404.pl_PL
dc.referencesT.S. Hassan, Interval oscillation for second order nonlinear differential equations with a damping term, Serdica Math. J. 34 (2008) 4, 715–732.pl_PL
dc.referencesT.S. Hassan, L. Erbe, A. Peterson, Forced oscillation of second order differential equations with mixed nonlinearities, Acta Math. Sci. 31 (2011) 2, 613–626.pl_PL
dc.referencesH. Li, Y. Liu, On sign-changing solutions for a second-order integral boundary value problem, Comput. Math. Appl. 62 (2011) 2, 651–656.pl_PL
dc.referencesH. Li, J. Sun, Positive solutions of sublinear Sturm-Liouville problems with changing sign nonlinearity, Comput. Math. Appl. 58 (2009) 9, 1808–1815.pl_PL
dc.referencesE.H. Lieb, M. Loss, Analysis, Graduate Studies in Mathematics, Vol. 14, 1997.pl_PL
dc.referencesY. Liu, H. Yu, Existence and uniqueness of positive solution for singular boundary value problem, Comput. Math. Appl. 50 (2005) 1–2, 133–143.pl_PL
dc.referencesJ. Mawhin, Metody wariacyjne dla nieliniowych problemów Dirichleta, Wydawnictwa Naukowo-Techniczne, Warszawa, 1994 [in Polish].pl_PL
dc.referencesA. Orpel, Nonlinear BVPS with functional parameters, J. Differential Equations 246 (2009) 4, 1500–1522.pl_PL
dc.referencesD. O’Regan, A.Orpel, Eigenvalue intervals for higher order problems with singular nonlinearities, Appl. Math. Comput. 218 (2011) 4, 1233–1239.pl_PL
dc.referencesH. Su, L. Liu, Y. Wu, Positive solutions for Sturm Liouville boundary value problems in a Banach space, Abstr. Appl. Anal. (2012), Art. ID 572172, 11 pp.pl_PL
dc.referencesH. Su, Z. Wei, F. Xu, The existence of positive solutions for nonlinear singular boundary value system with p-Laplacian, Appl. Math. Comput. 181 (2006) 2, 826–836.pl_PL
dc.referencesZ. Wei, Positive solutions of singular Dirichlet boundary value problems at nonresonance, Chinese Ann. Math. Ser. A 20 (1999) 5, 543–552.pl_PL
dc.referencesG. Vidossich, On the continuous dependence of solutions of boundary value problems for ordinary differential equations, J. Differential Equations 82 (1989) 1, 1–14.pl_PL
dc.referencesJ. Yang, Z. Wei, K. Liu, Existence of symmetric positive solutions for a class of Sturm-Liouville-like boundary value problems, Appl. Math. Comput. 214 (2009) 2, 424–432.pl_PL
dc.contributor.authorEmailorpela@math.uni.lodz.plpl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 3.0 Polska
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 3.0 Polska