Show simple item record

dc.contributor.authorOrpel, Aleksandra
dc.date.accessioned2015-04-08T11:48:01Z
dc.date.available2015-04-08T11:48:01Z
dc.date.issued2014
dc.identifier.issn2300−6919
dc.identifier.urihttp://hdl.handle.net/11089/7784
dc.description.abstractWe deal with the existence and the continuous dependence of solutions on functional parameters for boundary valued problems containing the Sturm-Liouville equation. We apply these result to prove the existence of at least one solution for a certain class of optimal control problems.pl_PL
dc.language.isoenpl_PL
dc.publisherAGH University of Science and Technology Presspl_PL
dc.relation.ispartofseries0puscula Mathematica;34, no. 4
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.titleA note on the dependence of solutions on functional parameters for nonlinear sturm-liouville problemspl_PL
dc.typeArticlepl_PL
dc.page.number837–849pl_PL
dc.contributor.authorAffiliationUniversity of Łódź, Faculty of Mathematicspl_PL
dc.referencesT. Adamowicz, A. Kałamajska, On a variant of the maximum principle involving radial p-Laplacian with applications to nonlinear eigenvalue problems and nonexistence results, Topol. Methods Nonlinear Anal. 34 (2009) 1, 1–20.pl_PL
dc.referencesT. Adamowicz, A. Kałamajska, Maximum principles and nonexistence results for radial solutions to equations involving p-Laplacian, Math. Methods Appl. Sci. 33 (2010) 13, 1618–1627pl_PL
dc.referencesR.P. Agarwal, R.S. Grace, D. O’Regan, Oscilation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations, Dordrecht, Kluwer Academic, 2002.pl_PL
dc.referencesR. Dalmasso, Positive solutions of singular boundary value problems, Nonlinear Anal. 27 (1996) 6, 645–652.pl_PL
dc.referencesP. Eloe, J. Henderson, Uniqueness implies existence and uniqueness conditions for a class of (k + j)-point boundary value problems for nth order differential equations, Math. Nachr. 284 (2011) 2–3, 229–239.pl_PL
dc.referencesL. Erbe, T.S. Hassan, A. Peterson, Oscillation of second order neutral delay differential equations, Adv. Dyn. Syst. Appl. 3 (2008) 1, 53–71.pl_PL
dc.referencesA.F. Güvenilir, A. Zafer, Second order oscillation of forced functional differential equations with oscillatory potentials, Comput. Math. Appl. 51 (2006) 9–10, 1395–1404.pl_PL
dc.referencesT.S. Hassan, Interval oscillation for second order nonlinear differential equations with a damping term, Serdica Math. J. 34 (2008) 4, 715–732.pl_PL
dc.referencesT.S. Hassan, L. Erbe, A. Peterson, Forced oscillation of second order differential equations with mixed nonlinearities, Acta Math. Sci. 31 (2011) 2, 613–626.pl_PL
dc.referencesH. Li, Y. Liu, On sign-changing solutions for a second-order integral boundary value problem, Comput. Math. Appl. 62 (2011) 2, 651–656.pl_PL
dc.referencesH. Li, J. Sun, Positive solutions of sublinear Sturm-Liouville problems with changing sign nonlinearity, Comput. Math. Appl. 58 (2009) 9, 1808–1815.pl_PL
dc.referencesE.H. Lieb, M. Loss, Analysis, Graduate Studies in Mathematics, Vol. 14, 1997.pl_PL
dc.referencesY. Liu, H. Yu, Existence and uniqueness of positive solution for singular boundary value problem, Comput. Math. Appl. 50 (2005) 1–2, 133–143.pl_PL
dc.referencesJ. Mawhin, Metody wariacyjne dla nieliniowych problemów Dirichleta, Wydawnictwa Naukowo-Techniczne, Warszawa, 1994 [in Polish].pl_PL
dc.referencesA. Orpel, Nonlinear BVPS with functional parameters, J. Differential Equations 246 (2009) 4, 1500–1522.pl_PL
dc.referencesD. O’Regan, A.Orpel, Eigenvalue intervals for higher order problems with singular nonlinearities, Appl. Math. Comput. 218 (2011) 4, 1233–1239.pl_PL
dc.referencesH. Su, L. Liu, Y. Wu, Positive solutions for Sturm Liouville boundary value problems in a Banach space, Abstr. Appl. Anal. (2012), Art. ID 572172, 11 pp.pl_PL
dc.referencesH. Su, Z. Wei, F. Xu, The existence of positive solutions for nonlinear singular boundary value system with p-Laplacian, Appl. Math. Comput. 181 (2006) 2, 826–836.pl_PL
dc.referencesZ. Wei, Positive solutions of singular Dirichlet boundary value problems at nonresonance, Chinese Ann. Math. Ser. A 20 (1999) 5, 543–552.pl_PL
dc.referencesG. Vidossich, On the continuous dependence of solutions of boundary value problems for ordinary differential equations, J. Differential Equations 82 (1989) 1, 1–14.pl_PL
dc.referencesJ. Yang, Z. Wei, K. Liu, Existence of symmetric positive solutions for a class of Sturm-Liouville-like boundary value problems, Appl. Math. Comput. 214 (2009) 2, 424–432.pl_PL
dc.contributor.authorEmailorpela@math.uni.lodz.plpl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 3.0 Polska
Except where otherwise noted, this item's license is described as Uznanie autorstwa 3.0 Polska