dc.contributor.author | Fulmański, Piotr | |
dc.contributor.author | Nowakowski, Andrzej | |
dc.contributor.author | Pustelnik, Jan | |
dc.date.accessioned | 2015-04-08T08:04:39Z | |
dc.date.available | 2015-04-08T08:04:39Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 2300−6919 | |
dc.identifier.uri | http://hdl.handle.net/11089/7782 | |
dc.description.abstract | In this paper a new shape optimization algorithm is presented. As a model application we consider state problems related to fluid mechanics, namely the Navier-Stokes equations for viscous incompressible fluids. The general approach to the problem is described. Next, transformations to classical optimal control problems are presented. Then, the dynamic programming approach is used and sufficient conditions for the shape optimization problem are given. A new numerical method to find the approximate value function is developed. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | AGH University of Science and Technology Press | pl_PL |
dc.relation.ispartofseries | Opuscula Mathematica;34, no. 4 | |
dc.rights | Uznanie autorstwa 3.0 Polska | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/pl/ | * |
dc.title | Dynamic programming approach to structural optimization problem – numerical algorithm | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 699-724 | pl_PL |
dc.contributor.authorAffiliation | University of Łódź Faculty of Mathematics and Computer Science Computer Science | pl_PL |
dc.references | M. Burger, B. Hackl, W. Ring, Incorporating topological derivatives into level set methods, Journal of Computational Physics 194 (2004) 1, 344–362. | pl_PL |
dc.references | D. Bucur, G. Buttazzo, Variational Methods in Shape Optimization Problems, Birkhäuser, 2005. | pl_PL |
dc.references | C. Castaing, M. Valadier, Convex analysis and measurable multifunctions, Springer- -Verlag, 1977 | pl_PL |
dc.references | M. Dambrine, On variations of the shape Hessian and sufficient conditions for the stability of critical shapes, Rev. R. Acad. Cien. Serie A. Mat. RACSAM 96 (2002) 1, 95–121. | pl_PL |
dc.references | M.C. Delfour, J.P. Zolésio, Shapes and Geometries: Analysis, Differential Calculus and Optimization, Adv. Des. Control, SIAM, Philadelphia, 2001. | pl_PL |
dc.references | K. Eppler, Second derivatives and sufficient optimality conditions for shape functionals, Control Cybernet. 29 (2000), 485–512. | pl_PL |
dc.references | K. Eppler, H. Harbrecht, Numerical solution of elliptic shape optimization problems using wavelet-based BEM, Optim. Methods Softw. 18 (2003), 105–123. | pl_PL |
dc.references | K. Eppler, H. Harbrecht, 2nd order shape optimization using wavelet BEM, Optim. Methods Softw. 21 (2006), 135–153. | pl_PL |
dc.references | K. Eppler, H. Harbrecht, R. Schneider, On convergence in elliptic shape optimization, SIAM J. Control Optim. 46 (2007) 1, 61–83. | pl_PL |
dc.references | W.H. Fleming, R.W. Rishel, Deterministic and Stochastic Optimal Control, New York, Springer-Verlag, 1975. | pl_PL |
dc.references | P. Fulmański, A. Laurin, J.F. Scheid, J. Sokolowski, A level set method in shape and topology optimization for variational inequalities, Int. J. Appl. Math. Comput. Sci. 17 (2007), 413–430. | pl_PL |
dc.references | P. Fulmański, A. Nowakowski, Dual dynamic approach to shape optimization, Control Cybernet. 35 (2006) 2, 205–218. | pl_PL |
dc.references | S. Garreau, P. Guillaume, M. Masmoudi, The topological asymptotic for PDE systems: the elasticity case, SIAM J. Control Optim. 39 (2001), 1756–1778. | pl_PL |
dc.references | J. Haslinger, R. Mäkinen, Introduction to Shape Optimization. Theory, Approximation and Computation, SIAM Publications, Philadelphia, 2003. | pl_PL |
dc.references | I. Hlavaček, J. Haslinger, J. Nečas, J. Lovišek, Solving of variational Inequalities in Mechancs, Mir, Moscow, 1996 [in Russian]. | pl_PL |
dc.references | H. Maurer, J. Oberle, Second order sufficient conditions for optimal control problems with free final time: the Riccati approach, SIAM J. Control Optim. 41 (2002), 380–403. | pl_PL |
dc.references | A. Nowakowski, Shape optimization of control problems described by wave equations, Control Cybernet. 37 (2008) 4, 1045–1055. | pl_PL |
dc.references | J. Pustelnik, Approximation of optimal value for Bolza problem, Ph.D. Thesis, 2009 [in Polish]. | pl_PL |
dc.references | J. Sokołowski, J.P. Zolésio, Introduction to Shape Optimiation, Springer-Verlag, 1992. | pl_PL |
dc.references | J. Sokołowski, A. Żochowski, Optimality conditions for simultaneous topology and shape optimization, SIAM J. Control Optim. 42 (2003) 4, 1198–1221. | pl_PL |
dc.references | J. Sokołowski, A. Żochowski, On Topological Derivative in Shape Optimization, [in:] T. Lewiśki, O. Sigmund, J. Sokołowski, A. Żochowski, Optimal Shape Design and Modelling, Academic Printing House EXIT, Warsaw, Poland, 2004, 55–143. | pl_PL |
dc.references | J. Sokołowski, A. Żochowski, A Modeling of topological derivatives for contact problems, Numer. Math. 102 (2005) 1, 145–179. | pl_PL |
dc.references | G. Stadler, Semismooth Newton and augmented Lagrangian methods for a simplified friction problem, SIAM J. Optim. 15 (2004) 1, 39–62. | pl_PL |
dc.contributor.authorEmail | annowako@math.uni.lodz.pl | pl_PL |