Show simple item record

dc.contributor.authorKlim, Dorota
dc.contributor.authorWardowski, Dariusz
dc.date.accessioned2015-04-07T08:33:00Z
dc.date.available2015-04-07T08:33:00Z
dc.date.issued2015-02-11
dc.identifier.issn1687-1812
dc.identifier.urihttp://hdl.handle.net/11089/7734
dc.description.abstractThe article is a continuation of the investigations concerning F-contractions which have been recently introduced in [Wardowski in Fixed Point Theory Appl. 2012:94,2012]. The authors extend the concept of F-contractive mappings to the case of nonlinear F-contractions and prove a fixed point theorem via the dynamic processes. The paper includes a non-trivial example which shows the motivation for such investigations. The work is summarized by the application of the introduced nonlinear F-contractions to functional equations.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringer International Publishingpl_PL
dc.relation.ispartofseriesFixed Point Theory and Applications;22
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.titleFixed points of dynamic processes of set-valued F-contractions and application to functional equationspl_PL
dc.typeArticlepl_PL
dc.page.number1-9pl_PL
dc.contributor.authorAffiliationDepartment of Nonlinear Analysis, Faculty of Mathematics and Computer Science,pl_PL
dc.referencesWardowski, D: Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 94 (2012)pl_PL
dc.referencesCosentino, M, Vetro, P: Fixed point results for F-contractive mappings of Hardy-Rogers-type. Filomat 28(4), 715-722 (2014)pl_PL
dc.referencesSgroi, M, Vetro, C: Multi-valued F-contractions and the solution of certain functional and integral equations. Filomat 27(7), 1259-1268 (2013)pl_PL
dc.referencesSecelean, NA: Iterated function systems consisting of F-contractions. Fixed Point Theory Appl. 2013, 277 (2013)pl_PL
dc.referencesPaesano, D, Vetro, C: Multi-valued F-contractions in 0-complete partial metric spaces with application to Volterra type integral equation. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 108, 1005-1020 (2014)pl_PL
dc.referencesHussain, N, Salimi, P: Suzuki-Wardowski type fixed point theorems for α-GF-contractions. Taiwan. J. Math. 18, 6 (2014)pl_PL
dc.referencesAubin, JP, Ekeland, I: Applied Nonlinear Analysis. Wiley, New York (1984)pl_PL
dc.referencesAubin, JP, Siegel, J: Fixed points and stationary points of dissipative multivalued maps. Proc. Am. Math. Soc. 78, 391-398 (1980)pl_PL
dc.referencesBellman, R, Lee, ES: Functional equations in dynamic programming. Aequ. Math. 17, 1-18 (1978)pl_PL
dc.contributor.authorEmailwardd@math.uni.lodz.plpl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 3.0 Polska
Except where otherwise noted, this item's license is described as Uznanie autorstwa 3.0 Polska