Show simple item record

dc.contributor.authorSzklarek, S.
dc.contributor.authorStolarska, M.
dc.contributor.authorWagner, Iwona
dc.contributor.authorMankiewicz-Boczek, J.
dc.date.accessioned2015-03-18T07:40:02Z
dc.date.available2015-03-18T07:40:02Z
dc.date.issued2015
dc.identifier.issn1573-2959
dc.identifier.urihttp://hdl.handle.net/11089/7344
dc.description.abstractThe aim of the study was to use a battery of biotests composed of producers (Selenastrum capricornutum, Sorghum saccharatum, Lepidium sativum, and Sinapis alba), consumers (Thamnocephalus platyurus), and decomposers (Tetrahymena thermophila) to evaluate the toxicity of snowmelt and winter storm water samples. The toxicity of the samples collected in the winter period December to February (2010–2011), in one of the largest agglomerations in Poland, the city of Lodz, was compared to that of storm water samples taken under similar conditions in June. The most toxic snowmelt samples were found to be high acute hazard (class IV), while the remaining samples were rated as slight acute hazard (class II). L. sativum (in the Phytotox test) was the most sensitive test organism, giving 27 % of all toxic responses, followed by S. capricornutum with 23 % of all responses. T. thermophila was the least sensitive, with only 2 % of all toxic responses. The greatest range of toxicity was demonstrated by samples from the single family house catchment: no acute hazard (class I) to high acute hazard (class IV)pl_PL
dc.language.isoenpl_PL
dc.publisherSpringerpl_PL
dc.relation.ispartofseriesEnvironmental monitoring and assessment;(2015) 187: 16
dc.rightsUznanie autorstwa-Bez utworów zależnych 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/3.0/pl/*
dc.subjectToxicitypl_PL
dc.subjectMicrobiotestpl_PL
dc.subjectUrban runoffpl_PL
dc.subjectStormwaterpl_PL
dc.subjectSnowmeltpl_PL
dc.titleThe microbiotest battery as an important component in the assessment of snowmelt toxicity in urban watercourses—preliminary studiespl_PL
dc.typeArticlepl_PL
dc.page.number1-11pl_PL
dc.contributor.authorAffiliationS. Szklarek: Department of Applied Ecology, University of Lodz, Polandpl_PL
dc.contributor.authorAffiliationM. Stolarska: WIND-HYDRO, Lodz, Polandpl_PL
dc.contributor.authorAffiliationI. Wagner:Department of Applied Ecology, University of Lodz, Polandpl_PL
dc.contributor.authorAffiliationJ. Mankiewicz-Boczek: Department of Applied Ecology, University of Lodz, Polandpl_PL
dc.referencesAlgaltoxkit (1996). Freshwater toxicity test with microalgae. Standard Operational Procedure. Creasel, Deinze, Belgium, p 28.pl_PL
dc.referencesBallantine, D. J., & Davies-Colley, R. J. (2014). Water quality trends in New Zealand rivers: 189-2009. Environmental Monitoring and Assessment, 186, 1939–1950.pl_PL
dc.referencesBartlett, A. J., Rochfort, Q., Brown, L. R., &Marsalek, J. (2012a). Causes of toxicity to hyalella Azteca in a stormwater management facility receiving highway runoff and snowmelt. Part I: polycyclic aromatic hydrocarbons and metals. Science of the Total Environment, 414, 227–237.pl_PL
dc.referencesBartlett, A. J., Rochfort, Q., Brown, L. R., & Marsalek, J. (2012b). Causes of toxicity to Hyalella azteca in a stormwater management facility receiving highway runoff and snowmelt. Part II: salts, nutrients, and water quality. Science of the Total Environment, 414, 238–247.pl_PL
dc.referencesBerretta, C., & Sansalone, J. (2011). Hydrologic transport and partitioning of phosphorus fractions. Journal of Hydrology, 403, 25–36.pl_PL
dc.referencesBeysens, D., Ohayon, C., Muselli, M., & Clus, O. (2006). Chemical and biological characteristic of dew and rain water in an urban costal area (Bordeaux, France). Atmospheric Environment, 40, 3710–3723.pl_PL
dc.referencesBlaise, C., Gagné, F., Chèvre, N., Harwood, M., Lee, K., Lappalainen, J., Chial, B., Persoone, G., & Doe, K. (2004). Toxicity assessment of oil-contaminated freshwater sediments. Environmental Toxicology, 19, 267–273.pl_PL
dc.referencesBrack,W., Bakker, J., de Deckere, E., Deerenberg, C., van Gils, J., Hein,M., Jurajda, P., Kooijman, B., Lamoree,M., Lek, S., de Alda, M. J. L., Marcomini, A., Muñoz, I., Rattei, S., Segner, H., Thomas, K., von der Ohe, P. C., Westrich, B., de Zwart, D., & Schmitt-Jansen, M. (2005). Models for assessing and forecasting the impact of environmental key pollutants on freshwater and marine ecosystems and biodiversity. Environmental Science and Pollution Research, 12(5), 252– 256.pl_PL
dc.referencesChong, M. N., Sidhu, J., Aryal, R., Tang, J., Gernjak, W., Escher, B., & Toze, S. (2013). Urban stormwater harvesting and reuse: a probe into the chemical, toxicology and microbiological contaminants in water quality. Environmental Monitoring and Assessment, 185, 6645–6652.pl_PL
dc.referencesChris, A., Zeeshan, M., Abraham, G., & Prasad, S. M. (2006). Proline accumulation in Cylindrospermum sp. Environemtal and Experimental Botan, 57, 154–159.pl_PL
dc.referencesDz, U. (2009) .27.169. Rozporządzenie Ministra Środowiska z dnia 28 stycznia 2009 r. zmieniające rozporządzenie w sprawie warunków, jakie należy spełnić przy wprowadzeniu ścieków do wód lub do ziemi, oraz w sprawie substancji szczególnie szkodliwych dla środowiska wodnego. Dziennik Ustaw nr 27 poz. 169: 2352-2554, Ministerstwo Środowiska, Warszawa (Regulation of the Minister of Environment of 28 January 2009 amending Regulation on the conditions to be met by the introduction of sewage into the water or soil, and on substances particularly harmful to the aquatic environment. Journal of Laws No. 27, item. 169: 2352-2554, Ministry of Environment, Warsaw)pl_PL
dc.referencesGöbel, P., Dierkes, C., & Coldewey, W. G. (2007). Storm water runoff concentration matrix for urban areas. Journal of Contaminant Hydrology, 91, 26–42.pl_PL
dc.referencesGolterman, H. L., Clymo, R. S., & Ohnstad, M. A. M. (1978). Methods for physical and chemical analysis of fresh waters. Oxford: Blackwell Scientific.pl_PL
dc.referencesGrimm, B. N., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., & Briggs, J. M. (2008). Global change and the ecology of cities. Science, 319, 756–760.pl_PL
dc.referencesGromaire-Mertz,M. C., Garnaud, S., Gonzalez, A., & Chebbo, G. (1999). Characterisation of urban runoff pollution in Paris. Water Science and Technology, 39(2), 1–8.pl_PL
dc.referencesGUS. (2012). Central Statistics Office in Lodz [online] http:// www.stat.gov.pl/lodz/39_PLK_HTML.htm.pl_PL
dc.referencesHach. (1997). Water analysis handbook (p. 1309). 3rd edn. Loveland, Colorado, U.S.A.: HACH company.pl_PL
dc.referencesHeijerick, D. G., Janssen, C. R., Karlèn, C., Wallinder, I. O., & Leygraf, C. (2002). Bioavailability of zinc in runoff water from roofing materials. Chemosphere, 47, 1073–1080.pl_PL
dc.referencesJartun, M., Ottesen, R. T., Steinnes, E., & Volden, T. (2008). Runoff of particle bound pollutants from urban impervious surfaces studied by analysis of sediments from stormwater traps. Science of the Total Environment, 396, 147–163.pl_PL
dc.referencesKaza, M., Mankiewicz-Boczek, J., Izydorczyk, K., & Sawicki, J. (2007). Toxicity assessment of water samples from rivers in Central Poland using a battery of microbiotests—a pilot study. Polish Journal of Environmental Studies, 16(1), 81– 89pl_PL
dc.referencesKelting, D. L., Laxson, C. L., & Yerger, E. C. (2012). Regional analysis of the effect of paved roads on sodium and chloride in lakes. Water Research, 46, 2749–2758.pl_PL
dc.referencesLee, J. Y., Kim, H., Kim, Y., & Han,M. Y. (2011). Characteristics of the event mean concentration (EMC) from rainfall runoff on an urban highway. Environmental Pollution, 159, 884– 888.pl_PL
dc.referencesMaisto,G., Manzo, S., DeNicola, F., Carotenuto, R., Rocco, A.,& Alfani, A. (2011). Assessment of the effects of Cr, Cu, Ni and Pb soil contamination by ecotoxicological tests. Journal of Environmental Monitoring, 13, 3049–3056.pl_PL
dc.referencesMankiewicz-Boczek, J., Nałęcz-Jawecki, G., Drobniewska, A., Kaza, M., Sumorok, B., Izydorczyk, K., Zalewski, M., & Sawicki, J. (2008). Application of a microbiotests battery for complete toxicity assessment of rivers. Ecotoxicology and Environmental Safety, 71, 830–836pl_PL
dc.referencesMarsalek, J., Oberts, G., & Viklander, M. (2000). Urban water quality issue in urban drainage in specific climates. Vol. II: urban drainage in cold climates. In C. Maksimovic, S. Saegrov, J.Milina, & T. Thorolfsson (Eds.), IHP-V technical documents in hydrology (pp. 97–117). Paris, France: UNESCOpl_PL
dc.referencesOleszczuk, P. (2008). Phytotoxicity of municipal sewage sludge composts related to physico-chemical properties, PAHs and heavy metals. Ecotoxicology and Environmental Safety, 69, 496–505.pl_PL
dc.referencesPalma, P., Alvarenga, P., Palma, V., Matos, C., Fernandes, R. M., Soares, A., & Barbosa, I. R. (2010). Evaluation of surface water quality using an ecotoxicological approach: a case study of the Alqueva Reservoir (Portugal). Environmental Science and Pollution Research, 17, 703–716.pl_PL
dc.referencesPersoone, G., Marsalek, B., Blinova, I., Törökne, A., Zarina, D., Manusadžianas, L., Nałęcz-Jawecki, G., Tofan, L., Stepanova, N., Tothova, L., & Kolar, B. (2003). A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters. Environmental Toxicology, 18, 395–402.pl_PL
dc.referencesPhytotoxkit (2004). Seed germination and early growth microbiotest with higher plants. Microbiotests. Belgium, p 24.pl_PL
dc.referencesPorter-Goff, E. R., Frost, P. C., & Xenopoulos, M. A. (2013). Changes in riverine benthic diatom community structure along a chloride gradient. Ecological Indicators, 32, 97–106.pl_PL
dc.referencesProtoxkit (1998). Freshwater toxicity test with a Ciliate Protozoan. Standard Operational Procedure. Creasel, Deinze, Belgium, p 18.pl_PL
dc.referencesRamakrishna, D., & Viraraghavan, T. (2005). Environmental impact of chemical deicers—a review. Water, Air, and Soil Pollution, 166, 49–63.pl_PL
dc.referencesSikorski, Ł., Piotrowicz-Cieślak, A. I., Adomas, B. (2011). Phytotoxicity of sodium chloride towards common duckweed (Lemna minor L.) and yellow lupin (Lupinus luteus L.). International Conference Environmenta(Bio)Technologies & EU-FP7 Environment Brokerage Event, Poland, Gdansk 05-08 September 2011 (Polish Presidency of the EU Council, a contribution to Innovative Europe).pl_PL
dc.referencesStolarska, M., Frątczak, W., Skowron, A., Zalewski, M. (2011). Wody roztopowe w zurbanizowanych zlewniach deszczowych na tle dynamiki przepływu i chemizmu wód rzecznych na przykładzie rzeki sokołówki. In: Łomotowski, J. (Ed.) Wody opadowe a zjawiska ekstremalne. Piaseczno: Siedel-Przywecki s.215 -224 (Meltwater in urbanized catchments of rain against the flow dynamics and chemistry of the river water on the example of the river Sokolowka In: Rainwater and extreme events).pl_PL
dc.referencesSwan, C. M., & DePalma, C. A. (2012). Elevated chloride and consumer presence independently influence processing of stream detritus. Urban Ecosystem, 15, 625–635.pl_PL
dc.referencesTang, J. Y. M., Aryal, R., Deletic, A., Gernjak, W., Glenn, E., McCarth, D., & Escher, B. I. (2013). Toxicity characterization of urban stormwater with bioanalytical tools. Water Research, 47, 5594–5606.pl_PL
dc.referencesThamnotoxkit (1995). Crustacean toxicity screening test for freshwater. Standard Operational Procedure. Creasel, Deinze, Belgium, p 23.pl_PL
dc.referencesTixier,G., Lafont,M., Grapentine, L., Rochfort,Q.,&Marsalek, J. (2011). Ecological risk assessment of urban stormwater ponds: literature review and proposal of a new conceptual approach providing ecological quality goals and the associated bioassessment tools. Ecological Indicators, 11, 1497–1506.pl_PL
dc.referencesTixier,G., Rochfort, Q., Grapentine, L.,Marsalek, J.,&Lafont, M. (2012). Spatial and seasonal toxicity in a stormwater management facility: evidence obtained by adapting an integrated sediment quality assessment approach. Water Research, 46, 6671–6682.pl_PL
dc.referencesTuikka, A. I., Schmitt, C., Höss, S., Bandow, N., von der Ohe, P. C., de Zwart, D., de Decker, E., Streck, G., Mothes, S., van Hattum, B., Kocan, A., Brix, R., Brack, W., Barceló, D., Sormunen, A. J., & Kukkonen, J. V. K. (2011). Toxicity assessment of sediments from three European river basins using a sediment contact test battery. Ecotoxicology and Environmental Safety, 74, 123–131.pl_PL
dc.referencesUrbaniak, M. (2008). PCBs and heavy metals contamination in bottom sediments from three reservoirs of different catchment characteristics. Polish Journal of Environmental Studies, 17(6), 941–949.pl_PL
dc.referencesUrbaniak, M. (2010). Transport of polychlorinated biphenyls in urban cascade reservoirs: levels, sources and correlation to the environmental conditions. Polish Journal of Environmental Studies, 19(1), 201–211.pl_PL
dc.referencesWaara, S., & Färm, C. (2008). An assessment of the potential toxicity of runoff from an urban roadscape during rain events. Environmental Science and Pollution Research, 15, 205– 210.pl_PL
dc.referencesWagner, I.,&Breil, P. (2013). The role of ecohydrology in creating more resilient cities. Ecohydrology & Hydrobiology, 13, 113–134.pl_PL
dc.referencesWagner, I., & Zalewski,M. (2000). Effect of hydrological patterns of tributaries on biotic processes in a lowland reservoir— consequences for restoration. Ecological Engineering, 16(1), 79–90.pl_PL
dc.referencesWFD. (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Union, L327/1, 22.12.2000pl_PL
dc.referencesWHO. (2011). Guidelines for drinking-water quality. Fourth Edition. (web) http://whqlibdoc.who.int/publications/2011/ 9789241548151_eng.pdf?ua=1.pl_PL
dc.referencesZalewski,M. (2000). Ecohydrology—the scientific background to use ecosystem properties as management tools toward sustainability of water resources. Ecological Engineering, 16(1), 1–8.pl_PL
dc.referencesZalewski,M. (2010). Ecohydrology for implementation of the EU water framework directive. Water Management, 164(WM8), 375–385.pl_PL
dc.referencesZgheib, S., Moilleron, R., & Chebbo, G. (2008). Screening of priority pollutants in urban stormwater: innovative methodology. Water Pollution, 111, 235–244.pl_PL
dc.referencesZgheib, S.,Moilleron, R.,&Chebbo,G. (2012). Priority pollutants in urban stormwater: Part 1—case of separate storm sewers. Water Research, 46, 6683–6692.pl_PL
dc.referencesZhu, H., Xu, Y., Yan, B., & Guan, J. (2012). Snowmelt runoff: a new focus of urban nonpoint source pollution. International Journal of Environmental Research and Public Health, 9, 4333–4345.pl_PL
dc.identifier.doi10.1007/s10661-014-4252-1


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa-Bez utworów zależnych 3.0 Polska
Except where otherwise noted, this item's license is described as Uznanie autorstwa-Bez utworów zależnych 3.0 Polska