| dc.contributor.author | Liyanage, Himanshi | |
| dc.contributor.author | Lipnicka, Marta | |
| dc.contributor.author | Kaźmierczak, Szymon | |
| dc.date.accessioned | 2025-12-17T10:41:04Z | |
| dc.date.available | 2025-12-17T10:41:04Z | |
| dc.date.issued | 2025-12-17 | |
| dc.identifier.citation | Liyanage H., Lipnicka M., Kaźmierczak S., A Stacked Meta Neural Network with Adaptive Nonlinear Decision Fusion for Cardiovascular Disease Prediction, [w:] Synergy of Diversity: Data, Modeling and Decisions, Spodzieja S. (red.), Wydawnictwo Uniwersytetu Łódzkiego, Lodz 2025, s. 31-39, https://doi.org/10.18778/8331-969-8-03 | pl |
| dc.identifier.uri | http://hdl.handle.net/11089/57008 | |
| dc.description.abstract | Cardiovascular disease (CVD) remains a leading global cause of mortality, emphasizing the need for reliable early prediction systems. This study proposes a Stacked Meta Neural Network (SMNN) that integrates multiple machine learning classifers through nonlinear decision fusion. In the frst stage, six base models generate probabilistic outputs using a k-fold out-of-fold (OOF) strategy. These are then combined by a shallow Artifcial Neural Network (ANN) meta-learner to capture hidden nonlinear interactions. Experimental evaluation on a dataset of over 66,000 records achieved strong performance, with high recall and balanced ROCAUC, demonstrating the SMNN’s efectiveness as a robust and generalizable tool for CVD risk prediction. | pl |
| dc.language.iso | pl | |
| dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
| dc.relation.ispartof | Spodzieja S. (red.), Synergy of Diversity: Data, Modeling and Decisions, Wydawnictwo Uniwersytetu Łódzkiego, Lodz 2025; | pl |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.title | A Stacked Meta Neural Network with Adaptive Nonlinear Decision Fusion for Cardiovascular Disease Prediction | pl |
| dc.type | Book chapter | |
| dc.page.number | 31-39 | |
| dc.contributor.authorAffiliation | Lipnicka, Marta - University of Lodz Faculty of Mathematics and Computer Science, Department of Analytic Functions and Differential Equations, Faculty of Mathematics and Computer Science | pl |
| dc.contributor.authorAffiliation | Kaźmierczak, Szymon - Wolski Hospital, Warsaw, Poland | pl |
| dc.identifier.eisbn | 978-83-8331-969-8 | |
| dc.identifier.doi | 10.18778/8331-969-8-03 | |