Pokaż uproszczony rekord

dc.contributor.authorSehrawat, Jagmahender Singh
dc.contributor.authorThakur, Shubham
dc.date.accessioned2025-10-21T12:13:37Z
dc.date.available2025-10-21T12:13:37Z
dc.date.issued2025-09-30
dc.identifier.issn1898-6773
dc.identifier.urihttp://hdl.handle.net/11089/56500
dc.description.abstractDental calculus is a creamish-yellow to brownish-black hard crust deposited on teeth, having the dietary micro-remains, biomolecules, oral microbes and the secretions preserved in it over a long period of time. It has served as a valuable source material for research in diverse scientific disciplines such as anthropology, archaeology, microbiology and forensic sciences. The host and microbial DNA extracted and sequenced from dental calculus deposits (DCD) have helped to establish the identity of unknown individuals, and also the use of certain drugs, tobacco products by the individuals of the past as well as contemporary human populations. The entrapped cellular as well as tissue fragments in calculus can help in identification, reconstruction of dietary habits, food practices, manner of death/pathologies the geographical and occupational affinity of ancient human remains. Calculus deposits gleaned from the archaeological or paleontological specimens can be used to assess the shifts in oral microbiota compositions and host-pathogen co-evolution as researchers have found calculus as rich source of oral microbiomes, pathogens, dietary biomolecules, and host DNA. Advancing dental calculus research through validation studies, technological innovations, interdisciplinary collaborations, longitudinal research, and ethical considerations holds promise for its robust forensic anthropological utilizations. The current status of anthropological, archaeological and microbial research involving dental calculus deposits, future challenges, and its forensic anthropological significance are presented in this review article.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesAnthropological Review;3en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectforensic anthropologyen
dc.subjectdental calculusen
dc.subjectdietary and disease statusen
dc.subjecthost and oral microbiome DNAen
dc.subjectidentificationen
dc.titleForensic Anthropological Significance of Dental Calculus Deposits as Proxy Identifier of the Host and the Oral Microbiota: A Scoping Reviewen
dc.typeArticle
dc.page.number19-36
dc.contributor.authorAffiliationSehrawat, Jagmahender Singh - Department of Anthropology, Panjab University, Chandigarh, Indiaen
dc.contributor.authorAffiliationThakur, Shubham - Department of Anthropology, Panjab University, Chandigarh, Indiaen
dc.identifier.eissn2083-4594
dc.referencesAas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. 2005. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43(11): 5721–5732. https://doi.org/10.1128/JCM.43.11.5721-5732.2005en
dc.referencesAbdazimov AD. 1991. Changes in the trace element composition of the hard dental tissues, dental calculus, saliva and gingival biopsies in workers under the influence of unfavorable factors in the manufacture of Cu, Zn and Pb. Stomatologiia (Mosk) 70(3): 22–25.en
dc.referencesAdler CJ, Dobney K, Weyrich LS, Kaidonis J, Walker AW, Haak W, Bradshaw CJ, Townsend G, Sołtysiak A, Alt KW, Parkhill J. 2013. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nat Genet 45(4): 450–455. http://doi.org/10.1038/ng.2536en
dc.referencesAkcalı A, Lang NP. 2000. Dental calculus: The calcified biofilm and its role in disease development. Periodontol 76: 109–115. https://doi.org/10.1111/prd.12151en
dc.referencesAnerud A, Loe H, Boysen H. 1991. The natural history and clinical course of calculus formation in man. J Clin Periodontol 18: 160–170. https://doi.org/10.1111/j.1600-051X.1991.tb01128.xen
dc.referencesArning N, Wilson DJ. 2020. The past, present and future of ancient bacterial DNA. Microb Genom, Vol. 6(7). https://doi.org/10.1099/mgen.0.000384en
dc.referencesBeiswanger BB. Segreto VA, Mallatt ME. Pfeiffer HJ. 1989. The prevalence and incidence of dental calculus in adults. J Clin Dent 1: 55–58.en
dc.referencesBelstrøm D, Olsen JV, Cappellini E, Jensen LJ, Willerslev E, Fotakis AK, Kelstrup CD, Lynnerup N, Jersie-Christensen RR, Lanigan LT, Lyon D. 2018. Quantitative metaproteomics of medieval dental calculus reveals individual oral health status. Nat Commun 9: 4744. https://doi.org/10.1038/s41467-018-07148-3en
dc.referencesBergstrom J. 1999. Tobacco smoking and supragingival dental calculus. J Clin Periodontol 26(8): 541–547. https://doi.org/10.1034/j.1600-051X.1999.260808.xen
dc.referencesBerton F, Rupel K, Florian F, Biasotto M, Pallavicini A, Di Lenarda R. 2021. Dental calculus – a reservoir for detection of past SARS-CoV-2 infection. Clin Oral Investig 25: 5113–5114. https://doi.org/10.1007/s00784-021-04001-8en
dc.referencesBhat M. 1991. Periodontal health of 14–17-year-old US schoolchildren. J Pub Health Dentist 51: 5–11. https://doi.org/10.1111/j.1752-7325.1991.tb02168.xen
dc.referencesBlack J, Kerr S, Henebry-Deleon L, Lorenz JG. 2011. Dental calculus as an alternate source of mitochondrial DNA for analysis of skeletal remains. Proc Soc Calif Archaeol 25: 1–7.en
dc.referencesBlank LW. Rule JT. Colangelo GA, Copelan NS, Perlich MA. 1994. The relationship between first presentation and subsequent observations in heavy calculus formers. Periodontol 65: 750–754. https://doi.org/10.1902/jop.1994.65.8.750en
dc.referencesBlatt SH, Redmond BG, Cassman V, Sciulli PW. 2011. Dirty teeth and ancient trade: Evidence of cotton fibres in human dental calculus from Late Woodland, Ohio. Int J Osteoarchaeol 21: 669–678. https://doi.org/10.1002/oa.1173en
dc.referencesBlatt SH, Shields JR, Michael AR. 2022. Dental calculus reveals life history of decedents in forensic cases: an anthropological perspective on human identification. Foren Genom 2(1): 5–16. http://doi.org/10.1089/forensic.2022.0003en
dc.referencesBonczarowska JH, Susat J, Mühlemann B, Jasch-Boley I, Brather S, Höke B, Brather-Walter S, Schoenenberg V, Scheschkewitz J, Graenert G, Krausse D. 2022. Pathogen genomics study of an early medieval community in Germany reveals extensive co-infections. Genom Biol 23(1):1–16. https://doi.org/10.1186/s13059-022-02806-8en
dc.referencesBos KI, Kühnert D, Herbig A, Esquivel-Gomez LR, Andrades Valtueña A, Barquera R, Giffin K, Kumar Lankapalli A, Nelson EA, Sabin S, Spyrou MA. 2019. Paleomicrobiology: Diagnosis and Evolution of Ancient Pathogens. Annu. Rev. Microbiol 73: 639–666. https://doi.org/10.1146/annurev-micro-090817-062436en
dc.referencesBrealey JC, Leitao HG, van der Valk T, Xu W, Bougiouri K, Dalen L, Guschanski K. 2020. Dental calculus as a tool to study the evolution of the mammalian oral microbiome Mol Biol Evol 37(10): 3003–3022. http://doi.org/10.1093/molbev/msaa135en
dc.referencesBreuer MM, Mboya SA, Moroi H, Turesky SS. 1996. Effect of selected beta blockers on supragingival calculus formation. J Periodontol 67: 428–432. https://doi.org/10.1902/jop.1996.67.4.428en
dc.referencesBrothwell DR. 1981. Digging Up Bones. New York: Cornell University Press.en
dc.referencesBrundin M, Figdor D, Sundqvist G, Sjögren U. 2013. DNA binding to hydroxyapatite: A potential mechanism for preservation of microbial DNA. J Endod 39: 211–216. https://doi.org/10.1016/j.joen.2012.09.013en
dc.referencesBuckley S, Usai D, Jakob T, Radini A, Hardy K. 2014. Dental calculus reveals unique insight into food items, cooking and plant processing in prehistoric central Sudan. PLoS One (2014) e100808. http://dx.doi.org/10.1371/journal.pone.0100808en
dc.referencesCappellini E, Collins MJ, Gilbert MTP. 2014. Biochemistry: unlocking ancient protein palimpsests. Science 343, 1320–1322. http://doi.org/10.1126/science.1249274en
dc.referencesCastro AE, de Ungria MCA. 2022. Methods used in microbial forensics and epidemiological investigations for stronger health systems, Foren Sci Res 7(4): 650–661. http://doi.org/10.1080/20961790.2021.2023272en
dc.referencesCharlier, Philippe Huynh-Charlier I, Munoz O, Billard M, Brun L, Grandmaison GL. 2010. The microscopic (optical and SEM) examination of dental calculus deposits (DCD). Potential interest in forensic anthropology of a bio-archaeological method. Legal Med 12: 163–171. https://doi.org/10.1016/j.legalmed.2010.03.003en
dc.referencesCharlier P. 2013. Dental calculus examination for forensic and anthropological purposes. Protocol Exchange. http://doi.org/10.1038/protex.2013.043en
dc.referencesCoccato A, Moens L, Vandenabeele P. 2017. On the stability of medieval inorganic pigments: A literature review of the effect of climate, material selection, biological activity, analysis and conservation treatments. Herit Sci 5: 12. http://doi.org/0.1186/s40494-017-0125-6en
dc.referencesDamle S. 2016. Genetic determination through dental calculus: Promise and hope! Contemp Clin Dent 7(2): 129. https://doi.org/10.4103/0976-237X.183065en
dc.referencesDe la Fuente CP, Flores SV, Moraga ML. 2012. Human bacterial DNA from dental calculus: a new source of genetic material. Am J Phys Anthropol 147: 127.en
dc.referencesDewhirst FE, Chen T, Izard J, Paster BJ, Tanner ACR, Yu Wen-Han, Lakshmanan A, Wade WG. 2010. The human oral microbiome. J Bacteriol 192(19): 5002–5017. https://doi.org/10.1128/jb.00542-10en
dc.referencesDobney K, Brothwell D. 1986. Dental calculus: Its relevance to ancient diet and oral ecology. In: Teeth and Anthropology (Cruwys E, Foley RA. eds.) Oxford: BAR Int Ser 291. 1986: 55–81.en
dc.referencesDobney K, Brothwell DR. 1988. A method for evaluating the amount of dental calculus on teeth from archaeological sites. J Archaeol Sci 4(14): 343–351. https://doi.org/10.1016/0305-4403(87)90024-0en
dc.referencesDobney K. 1994. Study of dental calculus. The Jewish burial ground at Jewbury. (eds.) J Liley, G Stroud, D Brothwell, M Williamson, York, UK: Council of British Archaeology 1994: 507–21.en
dc.referencesDominguez-Bello M G, Blaser M J. 2011. The human microbiota as a marker for migrations of individuals and populations. Annu Rev Anthropol 40: 451–474. https://doi.org/10.1146/annurev-anthro-081309-145711en
dc.referencesDosseto A, Dux F, Eisenhofer R, Weyrich L. 2024. Assessing the utility of strontium isotopes in fossil dental calculus. J Archaeol Method and Theory. https://doi.org/10.1007/s10816-024-09651-yen
dc.referencesEerkens JW, Tushingham S, Brownstein KJ, Gribay R, Perez K, Murga E, Kaijankoski P, Rosenthal JS, Gang DR. 2018. Dental calculus as a source of ancient alkaloids: Detection of nicotine by LC-MS in calculus samples from the Americas. J Archaeol Sci Rep 18: 509–515. https://doi.org/10.1016/j.jasrep.2018.02.004en
dc.referencesEisenhofer R, Anderson A, Dobney K, Cooper A, Weyrich LS. 2019. Ancient microbial DNA in dental calculus: A new method for studying rapid human migration events. J Isl Coast Archaeol 14: 149–162. https://doi.org/10.1080/15564894.2017.1382620en
dc.referencesEmrich LJ, Shlossman M, Genco RJ. 1991. Periodontal disease in non-insulin dependent diabetes mellitus. J Periodontol 62: 123–131. https://doi.org/10.1902/jop.1991.62.2.123en
dc.referencesFiorin E, Sáez L, Malgosa A. 2018. Ferns as healing plants in medieval Mallorca, Spain? Evidence from human dental calculus. Int J Osteoarchaeol 29: 82–90. https://doi.org/10.1002/oa.2718en
dc.referencesFons-Badal C, Fons-Font A, Labaig-Rueda C, Fernanda Solá-Ruiz M, Selva-Otaolaurruchi E, Agustín-Panadero R. 2020. Analysis of predisposing factors for rapid dental calculus formation. J Clinc Med 9(3): 858. https://doi.org/10.3390/jcm9030858en
dc.referencesForshaw R. 2022. Dental calculus-oral health, forensic studies and archaeology: a review. British Dental J 233(11): 961–967. https://doi.org/10.1038/s41415-022-5266-7en
dc.referencesFotakis AK, Denham SD, Mackie M, Orbegozo MI, Mylopotamitaki D, Gopalakrishnan S, Sicheritz-Pontén T, Olsen JV, Cappellini E, Zhang G, Christophersen A. 2020. Multi-omic detection of Mycobacterium leprae in archaeological human dental calculus. Philos Trans R Soc Lond B Biol Sci 375: 20190584. https://doi.org/10.1098/rstb.2019.0584en
dc.referencesGilbert MTP, Bandelt H-J, Hofreiter M, Barnes I. 2005. Assessing ancient DNA studies. Trends Eco Evol 20(10): 541–544. https://doi.org/10.1016/j.tree.2005.07.005en
dc.referencesGismondi A, D’Agostino A, Canuti L, Di Marco G, Martínez-Labarga C, Angle M, Rickards O, Canini A. 2018. Dental calculus reveals diet habits and medicinal plant use in the Early Medieval Italian population of Colonna. J Archaeol Sci Rep 20: 556–564. https://doi.org/10.1016/j.jasrep.2018.05.023en
dc.referencesGodoy Allende M, Samplonius A. 2022. Dental anthropological report: Exploring plant-based treatments through the analysis of dental calculus and sediment of dental caries in a woman from the Late Preceramic period, Peru. Annal Anat 240: 151849. https://doi.org/10.1016/j.aanat.2021.151849en
dc.referencesHansen PH, Meldgaard J, Nordqvist J. 1991. (Eds.) The Greenland Mummies. Smithsonian Institution Press, Washington, DC, 1991.en
dc.referencesHardy K, Blakeney T, Copeland L, Kirkham J, Wrangham R, Collins M. 2009. Starch granules, dental calculus and new perspectives on ancient diet. J Archaeol Sci 36: 248–255. https://doi.org/10.1016/j.jas.2008.09.015en
dc.referencesHardy K, Buckley S, Copeland L. 2018. Pleistocene dental calculus: recovering information on Paleolithic food items, medicine, paleoenvironment and microbes. Evol Anthropol 27: 234–246. https://doi.org/10.1002/evan.21718en
dc.referencesHenry AG, Brooks AS, Piperno DR. 2011. Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraq; Spy I and II, Belgium). Proct Natl Acad Sci 108: 486–491. https://doi.org/10.1073/pnas.1016868108en
dc.referencesHenry AG, Piperno DR. 2008. Using plant microfossils from dental calculus to recover human diet: A case study from Tell al-Raqa’i, Syria. J Archaeol Sci 35(7): 1943–1950. https://doi.org/10.1016/j.jas.2007.12.005en
dc.referencesHiggins D, Austin JJ. 2013. Teeth as a source of DNA for forensic identification of human remains: A Review. Sci Just 53(4): 433–441. https://doi.org/10.1016/j.scijus.2013.06.001en
dc.referencesJin Y, Yip H-K. 2002. Supragingival calculus: formation and control. Crit Rev Oral Biol Med 13(5): 426–41. https://doi.org/10.1177/154411130201300506en
dc.referencesKazarina A, Peterlskosone-Gordina E, Kimsis J, Kuzmicka J, Zayakin P, Grikjans Z, Gerhards G, Ranka R. 2021. The postmedieval latvian oral microbiome in the context of modern dental calculus and modern dental plaque microbial profiles. Genes 12(2): 309–324 https://doi.org/10.3390/genes12020309en
dc.referencesLi Q, Luo K, Su Z, Huang F, Wu Y, Zhou F, Li Y, Peng X, Li J, Ren B. 2022. Dental calculus: A repository of bioinformation indicating diseases and human evolution. Front Cell Infect Microbiol 12: 1035324. https://doi.org/10.3389/fcimb.2022.1035324en
dc.referencesLieverse AR. 1999. Diet and the aetiology of dental calculus. Int J Osteoarchaeol 9(4): 219–232. https://doi.org/10.1002/(SICI)1099-1212(199907/08)9:43.0.CO;2-Ven
dc.referencesLisman D, Drath J, Zielińska G, Zacharczuk J, Piątek J, van de Wetering T, Ossowki A. 2023. The evidential value of dental calculus in the identification process. Sci Rep 13: 21666. https://doi.org/10.1038/s41598-023-48761-7en
dc.referencesMackie M, Radini A, Speller C. 2017. The Sustainability of Dental Calculus for Archaeological Research. In: Favreau J and Patalano R (eds.). Shallow Pasts, Endless Horizons: Sustainability & Archaeology, Proceedings of the 48th Annual Chacmool Archaeology Conference, 2017: 74–81.en
dc.referencesMacLean D, Jones JDG, Studholme DJ. 2009. Application of ’next-generation’ sequencing technologies to microbial genetics. Nature Rev Microbiol 7(4): 96–97. https://doi.org/10.1038/nrmicro2088en
dc.referencesMacpherson LMD, Girardin DC, Hughes NJ, Stephen KW, Dawes C. 1995. The site-specificity of supragingival calculus deposition on the lingual surfaces of the six permanent lower anterior teeth in humans and the effects of age, sex, gum-chewing habits, and the time since the last prophylaxis on calculus scores. J Dental Research 74(10): 1715–1720. https://doi.org/10.1177/00220345950740101401en
dc.referencesMann AE, Sabin S, Ziesemer K, Vågene ÅJ, Schroeder H, Ozga AT, Sankaranarayanan K, Hofman CA, Fellows Yates JA, Salazar-García DC, Frohlich B, Aldenderfer M, Hoogland M, Read C, Milner GR, Stone AC, Lewis Jr CM, Krause J, Hofman C, Bos KI, Warinner C. 2018. Differential preservation of endogenous human and microbial DNA in dental calculus and Dentin. Sci Rep 8(1): 9822. https://doi.org/10.1038/s41598-018-28091-9en
dc.referencesMcDougall WA. 1985. Analytical transmission electron microscopy of the distribution of elements in human supragingival dental calculus. Arch Oral Biol 30: 603–608. https://doi.org/10.1016/0003-9969(85)90080-9en
dc.referencesMealey BL, Klokkevold PR. 2019. Impact of periodontal infection on systemic health. In Newman MG, Takei HG, Klokkevold PR, Carranza FA (eds). Newman and Carranza’s Clinical Periodontology. 13th ed.: 225–236. Philadelphia: Elsevier, 2019.en
dc.referencesModi A, Pisaneschi L, Zaro V, Vai S, Vergata C, Casalone E, Caramelli D, Moggi-Cecchi J, Lippi MM, Lari M. 2020. Combined methodologies for gaining much information from ancient dental calculus: testing experimental strategies for simultaneously analysing DNA and food residues. Archaeol Anthropol Sci 12(1): 10. https://doi.org/10.1007/s12520-019-00983-5en
dc.referencesMuro STN, Cucina A. 2024. Periodontitis and alveolar resorption in human skeletal remains: The relationship between quantitative alveolar bone loss, occlusal wear, antemortem tooth loss, dental calculus and age at death in a low socioeconomic status, modern forensic human collection from Yucatan. Inter J Paleopathol 45: 7–17. https://doi.org/10.1016/j.ijpp.2024.02.001en
dc.referencesNaud S, Ibrahim A, Valles C, Maatouk M, Bittar F, Tidjani Alou M, Raoult D. 2022. Candidate Phyla Radiation, an Underappreciated Division of the Human Microbiome, and Its Impact on Health and Disease. Clin Microbiol Rev 35, e0014021. https://doi.org/10.1128/cmr.00140-21en
dc.referencesOttoni C, Borić D, Cheronet O, Sparacello V, Dori I, Coppa A, Antonović D, Vujević D, Price TD, Pinhasi R, Cristiani E. 2021. Tracking the transition to agriculture in southern Europe through ancient DNA analysis of dental calculus. Proc Natl Acad Sci USA 118(32): e2102116118. https://doi.org/10.1073/pnas.2102116118en
dc.referencesOttoni C, GuellilM,Ozga AT, Stone AC, Kersten O, Bramanti B, Porcier S, Van Neer W. 2019. Metagenomic analysis of dental calculus in ancient. Sci Rep 9(1): 19637. https://doi.org/10.1038/s41598-019-56074-xen
dc.referencesOzga AT, Gilby I, Nockerts RS, Wilson ML, Pusey A, Stone AC. 2019. Oral microbiome diversity in chimpanzees from Gombe National Park. Sci Rep 9(1): 17354. https://doi.org/10.1038/s41598-019-53802-1en
dc.referencesPower RC, Salazar-Garcı´a DC, Straus LG, Gonza´lez Morales MR, Henry AG. 2015. Microremains from El Miro´n Cave human dental calculus suggest a mixed plant–animal subsistence economy during the Magdalenian in Northern Iberia. J Archaeol Sci 60: 39–46. https://doi.org/10.1016/j.jas.2015.04.003en
dc.referencesPreshaw PM, Alba AL, Herrera D, Jepsen S, Konstantinidis A, Makrilakis K, Taylor R. 2012. Periodontitis and diabetes: a two-way relationship. Diabetologia 55: 21–31. https://doi.org/10.1007/s00125-011-2342-yen
dc.referencesPreus HR, Ole JM, Knut AS, Pia B. 2011. Ancient Bacterial DNA (aDNA) in Dental Calculus from Archaeological Human Remains. J Archaeol Sci 38: 1827–1831. https://doi.org/10.1016/j.jas.2011.03.020en
dc.referencesRadini A, Nikita E, Buckley S, Copeland L, Hardy K. 2017. Beyond food: The multiple pathways for inclusion of materials into ancient dental calculus. Am J Phys Anthropol 162: 71–83. https://doi.org/10.1002/ajpa.23147en
dc.referencesRaj M, Boaz K, Srikant N. 2013. Are teeth evidence in acid environment. J Forensic Dent Sci 5(1):7-10. http://doi.org/10.4103/0975-1475.114536en
dc.referencesSawafuji R, Saso A, Suda W, Hattori M, Ueda S. 2020. Ancient DNA analysis of food remains in human dental calculus from the Edo period, Japan. PLoS One 15(3): e0226654. https://doi.org/10.1371/journal.pone.0226654en
dc.referencesSchroeder HH. 1969. The formation and inhibit ion of dental calculus. Hans Huber: Berne, 1969: 10–208. https://doi.org/10.1902/jop.1969.40.11.643en
dc.referencesScott GR, Poulson SR. 2012. Stable carbon and nitrogen isotopes of human dental calculus: a potentially new non-destructive proxy for paleodietary analysis. J Archaeol Sci 39 (5):1388-1393. https://doi.org/10.1016/j.jas.2011.09.029en
dc.referencesSingh U, Goel S. 2017. Estimation and quantification of human DNA in dental calculus: A pilot study. J Forensic Dental Sci 9(3): 149–152. https://mail.jfds.org/index.php/jfds/article/view/544/410en
dc.referencesSørensen LK, Hasselstrøm JB, Larsen LS, Bindslev DA. 2021. Entrapment of drugs in dental calculus–detection validation based on test results from post-mortem investigations. Forensic Sci Int 319: 110647. http://doi.org/10.1016/j.forsciint.2020.110647en
dc.referencesStrömberg CAE, Dunn RE, Crifò C, Harris EB. 2018. Phytoliths in paleoecology: analytical considerations, current use, and future directions. In: Croft, D.A., Su, D.F., Simpson, S.W. (Eds.), Methods in Paleoecology: Reconstructing Cenozoic Terrestrial Environments and Ecological Communities. Springer International Publishing, Cham, 2018: 235–287.en
dc.referencesThe Human Microbiome Project Consortium. 2012. A framework for human microbiome research. Nature 486 (7402): 215–221. https://doi.org/10.1038/nature11209en
dc.referencesTuresky S, Breuer M, Cofeman G. 1992. The effect of certain systemic medications on oral calculus formation. J Periodontol 63: 871–875. https://doi.org/10.1902/jop.1992.63.11.871en
dc.referencesVelsko IM, Fellows Yates JA, Aron F, Hagan RW, Frantz LAF, Loe L, Martinez JBR, Chaves E, Gosden C, Larson G, Warinner C. 2019. Microbial differences between dental plaque and historic dental calculus are related to oral biofilm maturation stage. Microbiome 7(1): 102. http://doi.org/10.1186/s40168-019-0717-3en
dc.referencesWarinner C, Rodrigues JF, Vyas R, Trachsel C, Shved N, Grossmann J, Radini A, Hancock Y, Tito RY, Fiddyment S, Speller C. 2014. Pathogens and host immunity in the ancient human oral cavity. Nat Genet 46: 336–44. https://doi.org/10.1038/ng.2906en
dc.referencesWarinner C, Lewis CM. 2015 Microbiome and health in past and present human populations. Am Anthropol 117 (4): 740–741. https://doi.org/10.1111/aman.12367en
dc.referencesWarinner C, Speller C, Collins MJ, Lewis CM Jr. 2015. Ancient human microbiomes. J Hum Evol 79: 125–136. https://doi.org/j.jhevol.2014.10.016en
dc.referencesWarinner C, Speller C, Collins MJ. 2015. A new era in palaeomicrobiology: Prospects for ancient dental calculus as a long-term record of the human oral microbiome. Philos Trans Roy Soc London Ser B Biol Sci 370(1660): 20130376. https://doi.org/10.1098/rstb.2013.0376en
dc.referencesWasterlain SN, Cunha E, Hillson S. 2011. Periodontal disease in a Portuguese identified skeletal sample from the late nineteenth and early twentieth centuries. Am J Phys Anthropol 145: 30–42. https://doi.org/10.1002/ajpa.21464en
dc.referencesWeyrich LS, Laura S, Dobney K, Cooper A. 2015. Ancient DNA analysis of dental calculus. J Hum Evol 79: 119–124. https://doi.org/10.1016/j.jhevol.2014.06.018en
dc.referencesWhite DJ. 1997. Dental calculus: recent insights into occurrence, formation, prevention, removal and oral health effects of supragingival and subgingival deposits. Eur J Oral Sci 105(5 Pt 2): 508-522. https://doi.org/10.1111/j.1600-0722.1997.tb00238.xen
dc.referencesWillmann C, Mata X, Hanghoej K, Tonasso L, Tisseyre L, Jeziorski C, Cabot E, Chevet P, Crubézy E, Orlando L, Esclassan R. 2018 Oral health status in historic population: Macroscopic and metagenomic evidence. PLoS ONE 13, e0196482. https://doi.org/10.1371/journal.pone.0196482en
dc.referencesWright SL, Dobney K, Weyrich LS. 2021. Advancing and refining archaeological dental calculus research using multiomic frameworks. STAR: Science & Technology of Archaeological Research 7(1): 13–30.en
dc.referenceshttps://doi.org/10.1080/20548923.2021.1882122en
dc.referencesYaprak E, Yolcubal I, Sinanoğlu A, Doğrul-Demiray A, Guzeldemir-Akcakanat E, Marakoğlu I. 2017. High levels of heavy metal accumulation in dental calculus of smokers: a pilot inductively coupled plasma mass spectrometry study. J Periodontal Res 52: 83–88. https://doi.org/10.1111/jre.12371en
dc.referencesZhang B, Tan X, Zhang K. 2015. Cadmium profiles in dental calculus: A cross-sectional population-based study in Hunan province of China. Biol Trace Elem Res 185: 63-70. https://doi.org/10.1007/s12011-018-1251-zen
dc.referencesZhang B, Tan X, He X, Yang H, Wang Y, Zhang K. 2019. Evaluation of cadmium levels in dental calculus of male oral SCC patients with Betel-Quid chewing in Hunan Province of China. Biol Trace Elem Res 191: 348–353. https://doi.org/10.1007/s12011-019-1639-4en
dc.contributor.authorEmailSehrawat, Jagmahender Singh - jagminder@pu.ac.in
dc.contributor.authorEmailThakur, Shubham - shubham2430@gmail.com
dc.identifier.doi10.18778/1898-6773.88.3.02
dc.relation.volume88


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0