Pokaż uproszczony rekord

dc.contributor.authorMatuszewska, Dominika
dc.contributor.authorKiedrzyńska, Edyta
dc.contributor.authorJóźwik, Adam
dc.contributor.authorKiedrzyński, Marcin
dc.date.accessioned2025-05-28T07:49:01Z
dc.date.available2025-05-28T07:49:01Z
dc.date.issued2025
dc.identifier.urihttp://hdl.handle.net/11089/55647
dc.description.abstractThe aim of the article was to determine the shares of individual Baltic countries participating in the inflow of metal loads to the Baltic Sea and identify patterns of similarity between these countries regarding the causes of heavy metal load generation. The analyses used HELCOM and EUROSTAT data. The findings indicate that Finland and Sweden generate the highest total loads of heavy metals flowing in through rivers. However, Lithuania and Finland are distinguished by high metal loads calculated per km² of catchment area. Clustering countries in terms of their similarity in the heavy metal loads provided to the Baltic resulted in three groups. Finland and Lithuania generates the highest mean loads of cadmium, chromium, nickel and zinc per unit area [kg/km²/year]. Estonia and Latvia generates the highest mean annual loads of lead, mercury and copper. Poland, Germany and Sweden generates the lowest heavy metal loads. Multidimensional data analysis showed a strong correlation between aquaculture production in the Baltic Sea catchment area, the number of cattle, beef, mutton, pigs, poultry, and meat produced from them, the amount of waste, trucks, cereal production, the use of nitrogen fertilizers, and the loads of heavy metals reaching the Baltic Sea with river waters. Therefore, there is a need for continuous monitoring of the loads and transfer of heavy metals to the Baltic Sea, and for activities aimed at eliminating them from the environment. For this purpose, Nature-Based Solutions can be used, as they represent inexpensive, nature-friendly methods for removing pollutants from surface waters.pl_PL
dc.description.sponsorshipThe research was conducted as part of the Farmikro Project, funded entirely by the National Science Centre, Poland, Opus 22 (Project No. 2021/43/B/ST10/01076).pl_PL
dc.language.isoenpl_PL
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe*
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectBaltic Sea catchmentpl_PL
dc.subjectBaltic Sea surrounding countriespl_PL
dc.subjectEcohydrologypl_PL
dc.subjectheavy metalspl_PL
dc.subjectNature-Based Solutionspl_PL
dc.subjectwater contaminationpl_PL
dc.titleAn analysis of catchment factors associated with heavy metal export into the Baltic Sea and Nature-Based Solutions aimed at its limitationpl_PL
dc.typePreprintpl_PL
dc.page.number51pl_PL
dc.contributor.authorAffiliationUniversity of Lodz, Doctoral School of Exact and Natural Sciences, Banacha 12/16, 90-237 Lodz, Polandpl_PL
dc.contributor.authorAffiliationUniversity of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Polandpl_PL
dc.contributor.authorAffiliationEuropean Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364 Lodz, Polandpl_PL
dc.contributor.authorAffiliationUniversity of Lodz, Department of Computer Science, Faculty of Physics and Applied Informatics, Pomorska 149/153, 90-236 Lodz, Polandpl_PL
dc.contributor.authorAffiliationUniversity of Lodz, Faculty of Biology and Environmental Protection, Department of Biogeography, Paleoecology and Nature Conservation, Banacha 1/3, 90-237 Lodz, Polandpl_PL
dc.references1. Amos, H. M., Jacob, D. J., Streets, D. G., & Sunderland, E. M. 2013. Legacy impacts of all‐time anthropogenic emissions on the global mercury cycle. Global biogeochemical cycles, 27(2), 410-421. https://doi.org/10.1002/gbc.20040pl_PL
dc.references2. Anning, A. K., Korsah, P. E., & Addo-Fordjour, P. 2013. Phytoremediation of wastewater with Limnocharis flava, Thalia geniculata and Typha latifolia in constructed wetlands. International journal of phytoremediation, 15(5), 452-464. https://doi.org/10.1080/15226514.2012.716098pl_PL
dc.references3. Apler, A., & Josefsson, S. 2016. Swedish status and trend monitoring programme chemical contamination in offshore sediments 2003–2014. Swedish status and trend monitoring programme SGU-rapport 2016:04 urn:nbn:se:naturvardsverket:diva-6630pl_PL
dc.references4. Bełdowska, M., Saniewska, D., & Falkowska, L. 2014. Factors influencing variability of mercury input to the southern Baltic Sea. Marine Pollution Bulletin, 86(1-2), 283-290. https://doi.org/10.1016/j.marpolbul.2014.07.004pl_PL
dc.references5. Berg, K., Puntervoll, P., Valdersnes, S., & Goksøyr, A. 2010. Responses in the brain proteome of Atlantic cod (Gadus morhua) exposed to methylmercury. Aquatic Toxicology (Amsterdam, Netherlands), 100(1), 51–65. https://doi.org/10.1016/j.aquatox.2010.07.008pl_PL
dc.references6. Bianchi, E., Coppi, A., Nucci, S., Antal, A., Berardi, C., Coppini, E., Fibbi D., Del Bubba M., Gonnelli C. & Colzi, I. 2021. Closing the loop in a constructed wetland for the improvement of metal removal: the use of Phragmites australis biomass harvested from the system as biosorbent. Environmental Science and Pollution Research, 28, 11444-11453. https://doi.org/10.1007/s11356-020-11291-0pl_PL
dc.references7. Buszewski, B., & Kowalkowski, T. 2003. Poland’s environment-past, present and future state of the environment in the vistula and odra river basins. Environmental Science and Pollution Research, 10, 343-349. https://doi.org/10.1065/espr2003.11.177pl_PL
dc.references8. Chen, Q.-L., Sun, Y.-L., Liu, Z.-H., & Li, Y.-W. 2017. Sex-dependent effects of subacute mercuric chloride exposure on histology, antioxidant status and immune-related gene expression in the liver of adult zebrafish (Danio rerio). Chemosphere, 188, 1–9. https://doi.org/10.1016/j.chemosphere.2017.08.148pl_PL
dc.references9. Chen, H., Wu, D., Wang, Q., Fang, L., Wang, Y., Zhan, C., Zhang J., Zhang S., Cao J.,Qi S., & Liu, S. 2022. The predominant sources of heavy metals in different types of fugitive dust determined by principal component analysis (PCA) and positive matrix factorization (PMF) modeling in Southeast Hubei: a typical mining and metallurgy area in Central China. International Journal of Environmental Research and Public Health, 19(20), 13227. https://doi.org/10.3390/ijerph192013227pl_PL
dc.references10. Cullen, J. T., & Maldonado, M. T. 2012. Biogeochemistry of cadmium and its release to the environment. Cadmium: from toxicity to essentiality, 31-62. https://doi.org/10.1007/978-94-007-5179-8_2pl_PL
dc.references11. Ding, Q., Cheng, G., Wang, Y., & Zhuang, D. 2017. Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions. Science of the Total Environment, 578, 577-585. https://doi.org/10.1016/j.scitotenv.2016.11.001pl_PL
dc.references12. Dixit, R., Wasiullah, Malaviya, D., Pandiyan, K., Singh, U., Sahu, A., Shukla, R., Singh, B., Rai, J., Sharma, P., Lade, H., Paul, D. 2015. Bioremediation of heavy metals from soil and aquatic environment: An overview of prin¬ciples and criteria of fundamental processes. Sustainability, 7(2), 2189–2212. https://doi.org/10.3390/su7022189pl_PL
dc.references13. Egirani, D., Latif, M. T., Wessey, N., Poyi, N. R., & Shehata, N. 2021. Preparation and characterization of powdered and granular activated carbon from Palmae biomass for mercury removal. Applied Water Science, 11, 1-11. DOI:10.1007/s13201-020-01343-8pl_PL
dc.references14. Ekholm, P., Lehtoranta, J., Taka, M., Sallantaus, T., & Riihimäki, J. 2020. Diffuse sources dominate the sulfate load into Finnish surface waters. Science of the Total Environment, 748, 141297. https://doi.org/10.1016/j.scitotenv.2020.141297pl_PL
dc.references15. ESaTDOR European Seas and Territorial Development, Opportunities and Risks ANNEX 4 to the Scientific Report:\ Baltic Sea Regional Profile; 2013\pl_PL
dc.references16. Etteieb, S., Zolfaghari, M., Magdouli, S., Brar, K. K., & Brar, S. K. (2021). Performance of constructed wetland for selenium, nutrient and heavy metals removal from mine effluents. Chemosphere, 281, 130921. https://doi.org/10.1016/j.chemosphere.2021.130921pl_PL
dc.references17. European Union . 2000. Water Framework Directive 2000/60/EC of the European Parliament and of the Council of 23 October, 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Union, 43(L 327), 1–51. https://eur-lex.europa.eu/legal-content/en/NIM/?uri=oj:JOL_2000_327_R_0001_01pl_PL
dc.references18. European Union. 2008. Marine Strategy Framework Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy https://eur-lex.europa.eu/eli/dir/2008/56/oj/engpl_PL
dc.references19. European Union. 2013. Council Directive 2013/39/EU of the European Parliament and of the Council of 12 August, 2013; amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Official Journal of the European Union, 56(L 226), 1–17. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:226:0001:0017:en:PDFpl_PL
dc.references20. EUROSTAT. 2013. Agriculture, forestry and fishery statistics, ISSN 1977-2262, doi: 10.2785/45595pl_PL
dc.references21. EUROSTAT. 2014. Agriculture, forestry and fishery statistics, ISSN 2363-2488, doi: 10.2785/59171pl_PL
dc.references22. EUROSTAT. 2015a. Energy, transport and environment indicators, ISSN 2363-2372, doi: 10.2785/547816pl_PL
dc.references23. EUROSTAT. 2015b. Agriculture, forestry and fishery statistics, ISSN 2363-2488, doi: 10.2785/906420pl_PL
dc.references24. EUROSTAT. 2016a. Energy, transport and environment indicators, ISSN 1725-4566, doi: 10.2785/260003pl_PL
dc.references25. EUROSTAT. 2016b. Agriculture, forestry and fishery statistics, ISSN 2363-2488, doi: 10.2785/917017pl_PL
dc.references26. EUROSTAT. 2017a. Energy, transport and environment indicators, ISSN 2363-2372 doi:10.2785/964100pl_PL
dc.references27. EUROSTAT. 2017b. Agriculture, forestry and fishery statistics, ISSN 2363-2488 doi:10.2785/570022pl_PL
dc.references28. EUROSTAT. 2018a. Energy, transport and environment indicators, ISSN 2363-2372 doi:10.2785/94549pl_PL
dc.references29. EUROSTAT. 2018. Agriculture, forestry and fishery statistics, ISSN 2363-2488 doi:10.2785/340432pl_PL
dc.references30. Feng, Y. X., Yu, X. Z., & Zhang, H. 2021. A modelling study of a buffer zone in abating heavy metal contamination from a gold mine of Hainan Province in nearby agricultural area. Journal of Environmental Management, 287, 112299. https://doi.org/10.1016/j.jenvman.2021.112299pl_PL
dc.references31. Ferreira, A. J., Soares, D., Serrano, L. M., Walsh, R. P., Dias-Ferreira, C., & Ferreira, C. S. 2016. Roads as sources of heavy metals in urban areas. The Covões catchment experiment, Coimbra, Portugal. Journal of Soils and Sediments, 16, 2622-2639. https://doi.org/10.1007/s11368-016-1492-4pl_PL
dc.references32. Galili, T. 2015. dendextend: An R package for visualizing, adjusting, and comparing trees of hierarchical clustering. Bioinformatics, 31(22), 3718–3720. DOI: 10.1093/bioinformatics/btv428pl_PL
dc.references33. Garnaga, G. 2012. Integrated assessment of pollution in the Baltic Sea. Ekologija, 58(3). DOI:10.6001/ekologija.v58i3.2531pl_PL
dc.references34. Golmaei, M., Kinnarinen, T., Jernström, E., & Häkkinen, A. 2018. Extraction of hazardous metals from green liquor dregs by ethylenediaminetetraacetic acid. Journal of environmental management, 212, 219-227. https://doi.org/10.1016/j.jenvman.2018.01.078pl_PL
dc.references35. Good, J. F., O'Sullivan, A. D., Wicke, D., & Cochrane, T. A. 2012. Contaminant removal and hydraulic conductivity of laboratory rain garden systems for stormwater treatment. Water science and technology, 65(12), 2154-2161. https://doi.org/10.2166/wst.2012.135pl_PL
dc.references36. Guan, X., Wang, J., & Xiao, F. 2021. Sponge city strategy and application of pavement materials in sponge city. Journal of Cleaner Production, 303, 127022. https://doi.org/10.1016/j.jclepro.2021.127022pl_PL
dc.references37. Guo, S.-N., Zheng, J.-L., Yuan, S.-S., & Zhu, Q.-L. 2018. Effects of heat and cadmium exposure on stress-related responses in the liver of female zebrafish: Heat increases cadmium toxicity. The Science of the Total Environment, 618, 1363–1370. https://doi.org/10.1016/j.scitotenv.2017.09.264pl_PL
dc.references38. HELCOM 2018a: State of the Baltic Sea – Second HELCOM holistic assessment 2011-2016. Baltic Sea Environment Proceedings 155.pl_PL
dc.references39. HELCOM. 2018b. Inputs of hazardous substances to the Baltic Sea. Baltic Sea Environment Proceedings No. 162pl_PL
dc.references40. HELCOM. 2018c. Input of nutrients by the seven biggest rivers in the Baltic Sea region. Baltic Sea Environment Proceedings No. 161pl_PL
dc.references41. HELCOM. 2019. Background information on the Baltic Sea catchment area for the Sixth Baltic Sea Pollution load compilation (PLC-6)pl_PL
dc.references42. HELCOM. 2021a. Inputs of hazardous substances to the Baltic Sea. Baltic Sea Environment Proceedings No. 179pl_PL
dc.references43. HELCOM.2021b. Baltic Sea Action Plan 2021 updatepl_PL
dc.references44. HELCOM. 2021c. Applied methodology for the PLC-7 assessment.pl_PL
dc.references45. HELCOM. 2021d. Background information on the Baltic Sea catchment area for the Seventh Baltic Sea Pollution load compilation (PLC-7)pl_PL
dc.references46. HELCOM. 2024. Inputs of hazardous substances to the Baltic Sea (PLC-8). Baltic Sea Environment Proceedings n°196.pl_PL
dc.references47. Huang, W., Cao, L., Shan, X., Lin, L., & Dou, S. 2011. Toxicity testing of waterborne mercury with red sea bream (Pagrus major) embryos and larvae. Bulletin of Environmental Contamination and Toxicology, 86(4), 398–405. https://doi.org/10.1007/s00128-011-0238-7pl_PL
dc.references48. Ishchenko, V. A. 2018. Environment contamination with heavy metals contained in waste. Environmental Problems. Vol. 3, No. 1: 21-24.pl_PL
dc.references49. Izydorczyk K., Michalska-Hejduk D., Frączak W., Bednarek A., Łapińska M., Jarosiewicz P., Kosińska A. Zalewski M.. 2015. Strefy buforowe i biotechnologie ekohydrologiczne. W ograniczeniu zanieczyszczeń obszarowych. Europejskie Regionalne Centrum Ekohydrologii Polskiej Akademii Nauk ISBN: 9788392824510pl_PL
dc.references50. Jachimowicz, P., Radzevičius, A., Wojnarová, P., Šadzevičius, R., Horoszko, B., Dapkienė, M., Radziemska M., Klik, B. 2025. Two decades of heavy metal fluctuations in wastewater sludge in Lithuania with evolving trends and implications for treatment efficiency. Journal of Geochemical Exploration, 269, 107642. https://doi.org/10.1016/j.gexplo.2024.107642pl_PL
dc.references51. Jarosiewicz, P., Font-Najera, A., Mankiewicz-Boczek, J., Chamerska, A., Amalfitano, S., Fazi, S., & Jurczak, T. 2024. Stormwater treatment in constrained urban spaces through a hybrid Sequential Sedimentation Biofiltration System. Chemosphere, 367, 143696. https://doi.org/10.1016/j.chemosphere.2024.143696pl_PL
dc.references52. Jaskuła, J., & Sojka, M. 2022. Assessment of spatial distribution of sediment contamination with heavy metals in the two biggest rivers in Poland. Catena, 211, 105959. https://doi.org/10.1016/j.catena.2021.105959pl_PL
dc.references53. Kałmykow-Piwińska, A., & Falkowska, E. 2024. The Diversity of Geochemical and Ecotoxicological Indices of Alluvial Deposits Reflects the Pattern of Landforms: The Case of the Vistula River Valley in the Małopolski Gorge (Poland). Water, 17(1), 64 https://doi.org/10.3390/w17010064pl_PL
dc.references54. Karnib, M., Kabbani, A., Holail, H., & Olama, Z. 2014. Heavy metals removal using activated carbon, silica and silica activated carbon composite. Energy Procedia, 50, 113-120. https://doi.org/10.1016/j.egypro.2014.06.014pl_PL
dc.references55. Kassambara, A. 2019. ggcorrplot: Visualization of a Correlation Matrix Using ggplot2. R package version 0.1.3. URL https://CRAN.R-project.org/package=ggcorrplotpl_PL
dc.references56. Kassambara, A., & Mundt, F. 2020. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7. URL https://CRAN.R-project.org/package=factoextrapl_PL
dc.references57. Kassambara, A. 2021. rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R package version 0.7.0. URL https://CRAN.R-project.org/package=rstatix.pl_PL
dc.references58. Kassambara, A. 2022. Ggpubr: ‘Ggplot2’ Based Publication Ready Plots. https://cran.r-project.org/web/packages/ggpubr/index.htmlpl_PL
dc.references59. Kiedrzyńska, E., Belka, K., Jarosiewicz, P., Kiedrzyński, M., & Zalewski, M. 2021. The enhancement of valley water retentiveness in climate change conditions. The Science of the Total Environment, 799, 149427. https://doi.org/10.1016/j.scitotenv.2021.149427pl_PL
dc.references60. Kiedrzyńska, E., Jóźwik, A., Kiedrzyński, M., & Zalewski, M. 2014. Hierarchy of factors exerting an impact on nutrient load of the Baltic Sea and sustainable management of its drainage basin. Marine Pollution Bulletin, 88(1-2), 162-173. https://doi.org/10.1016/j.marpolbul.2014.09.010pl_PL
dc.references61. Kiedrzyńska, E., Urbaniak, M., Kiedrzyński, M., Jóźwik, A., Bednarek, A., Gągała, I., & Zalewski, M. 2017. The use of a hybrid Sequential Biofiltration System for the improvement of nutrient removal and PCB control in municipal wastewater. Scientific reports, 7(1), 5477. https://doi.org/10.1038/s41598-017-05555-ypl_PL
dc.references62. Klavinš, M., Briede, A., Rodinov, V., Kokorite, I., Parele, E., & Klavina, I. 2000. Heavy metals in rivers of Latvia. Science of the Total Environment, 262(1-2), 175-183. https://doi.org/10.1016/S0048-9697(00)00597-0pl_PL
dc.references63. Knox, A. S., Paller, M. H., Seaman, J. C., Mayer, J., & Nicholson, C. 2021. Removal, distribution and retention of metals in a constructed wetland over 20 years. Science of The Total Environment, 796, 149062. https://doi.org/10.1016/j.scitotenv.2021.149062pl_PL
dc.references64. Kruopiene, J. 2007. Distribution of Heavy Metals in Sediments of the Nemunas River (Lithuania). Polish Journal of Environmental Studies, 16(5).pl_PL
dc.references65. Kuang, C., Shan, Y., Gu, J., Shao, H., Zhang, W., Zhang, Y., Zhang, J. & Liu, H. 2016. Assessment of heavy metal contamination in water body and riverbed sediments of the Yanghe River in the Bohai Sea, China. Environmental Earth Sciences, 75, 1-13. https://doi.org/10.1007/s12665-016-5902-0pl_PL
dc.references66. Kuprijanov I., Väli G., Sharov A., Berezina N., Liblik T., Lips U., Kolesova N., Maanio J., Junttila V., Lips I. 2021. Hazardous substances in the sediments and their pathways from potential sources in the eastern Gulf of Finland. Marine Pollution Bulletin, 170, 112642. https://doi.org/10.1016/j.marpolbul.2021.112642pl_PL
dc.references67. Kumar, V., Singh, J., Saini, A., & Kumar, P. 2019. Phytoremediation of copper, iron and mercury from aqueous solution by water lettuce (Pistia stratiotes L.). Environmental Sustainability, 2, 55-65 https://doi.org/10.1007/s42398-019-00050-8pl_PL
dc.references68. Kumari, M., & Tripathi, B. D. 2015. Efficiency of Phragmites australis and Typha latifolia for heavy metal removal from wastewater. Ecotoxicology and environmental safety, 112, 80-86 https://doi.org/10.1016/j.ecoenv.2014.10.034pl_PL
dc.references69. Lê, S., Josse, J., & Husson, F. 2008. FactoMineR: An R package for multivariate analysis. Journal of Statistical Software, 25(1), 1–18. DOI 10.18637/jss.v025.i01pl_PL
dc.references70. Lindqvist, O., Johansson, K., Bringmark, L., Timm, B., Aastrup, M., Andersson, A., Bringmark L., Hovsenius G., Håkanson L., Iverfeldt Å., & Meili, M. 1991. Mercury in the Swedish environment—recent research on causes, consequences and corrective methods. Water, Air, and Soil Pollution, 55, xi-261. https://doi.org/10.1007/BF00542429pl_PL
dc.references71. Lodenius M. 2016. Factors affecting metal and radionuclide pollution in the Baltic sea. European Journal of Environmental Sciences, 6(2). https://doi.org/10.14712/23361964.2016.13pl_PL
dc.references72. Louekari, K., Mäkelä-Kurtto, R., Pasanen, J., Virtanen, V., Sippola, J., & Malm, J. 2000. Cadmium in fertilizers. risks to human health and the environment. http://urn.fi/URN:ISBN:952-453-020-1pl_PL
dc.references73. Luo, J. Z., Sheng, B. X., & Shi, Q. Q. 2020. A review on the migration and transformation of heavy metals influence by alkali/alkaline earth metals during combustion. Journal of Fuel Chemistry and Technology, 48(11), 1318-1326. https://doi.org/10.1016/S1872-5813(20)30088-8pl_PL
dc.references74. Mackenzie, J. S., & Jeggo, M. 2019. The one health approach—why is it so important?. Tropical medicine and infectious disease, 4(2), 88. https://doi.org/10.3390/tropicalmed4020088pl_PL
dc.references75. Maine, M. A., Duarte, M. V., & Suñé, N. L. 2001. Cadmium uptake by floating macrophytes. Water research, 35(11), 2629-2634. https://doi.org/10.1016/S0043-1354(00)00557-1pl_PL
dc.references76. Makridis C., Svarnas C., Rigas N., Gougoulias N., Roka L., Leontopoulos S. 2012. Transfer of heavy metal contaminants from animal feed to animal products. Journal of Agricultural Science and Technology. A, 2, 149-154.pl_PL
dc.references77. Manzetti, S. 2020. Heavy Metal Pollution in the Baltic Sea, from the North European Coast to the Baltic States, Finland and the Swedish Coastline to Norway. Fjordforsk AS Tech. Rep. 2020, 6, 90. DOI:10.13140/RG.2.2.11144.85769/1pl_PL
dc.references78. Marchand, L., Mench, M., Jacob, D. L., & Otte, M. L. 2010. Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: A review. Environmental pollution, 158(12), 3447-3461. https://doi.org/10.1016/j.envpol.2010.08.018pl_PL
dc.references79. Melamed, R., & Da Luz, A. B. 2006. Efficiency of industrial minerals on the removal of mercury species from liquid effluents. Science of the total environment, 368(1), 403-406. https://doi.org/10.1016/j.scitotenv.2005.09.091pl_PL
dc.references80. Merrikhpour, H., & Jalali, M. 2013. Comparative and competitive adsorption of cadmium, copper, nickel, and lead ions by Iranian natural zeolite. Clean Technologies and Environmental Policy, 15, 303-316. https://doi.org/10.1007/s10098-012-0522-1pl_PL
dc.references81. Moiseenko, T. I., & Gashkina, N. A. 2018. Biogeochemistry of cadmium: anthropogenic dispersion, bioaccumulation, and ecotoxicity. Geochemistry International, 56, 798-811. https://doi.org/10.1134/S0016702918080062pl_PL
dc.references82. Mukherjee, A. G., Wanjari, U. R., Renu, K., Vellingiri, B., & Gopalakrishnan, A. V. 2022. Heavy metal and metalloid-induced reproductive toxicity. Environmental Toxicology and Pharmacology, 92, 103859. https://doi.org/10.1016/j.etap.2022.103859pl_PL
dc.references83. Müller, A. 1999. Distribution of heavy metals in recent sediments in the Archipelago Sea of southwestern Finland. Boreal environment research, 4(4), 319-330. https://doi.org/10.1016/j.oceano.2017.11.001pl_PL
dc.references84. Napa, Ü., Kabral, N., Liiv, S., Asi, E., Timmusk, T., & Frey, J. 2015. Current and historical patterns of heavy metals pollution in Estonia as reflected in natural media of different ages: ICP Vegetation, ICP Forests and ICP Integrated Monitoring data. Ecological Indicators, 52, 31-39. https://doi.org/10.1016/j.ecolind.2014.11.028pl_PL
dc.references85. Ning-jing, H., Peng, H., Hui, Z., Ai-mei, Z., Ji-hua, L., Jun, Z., & Lian-hua, H. 2015. Anthropogenic Pb input into Bohai Bay, China: Evidence from stable Pb isotopic compositions in sediments. Continental Shelf Research, 109, 188-197. https://doi.org/10.1016/j.csr.2015.09.004pl_PL
dc.references86. Ojaveer, H., Jaanus, A., MacKenzie, B. R., Martin, G., Olenin, S., Radziejewska, T., Telesh I., Zettler M.L., & Zaiko, A. 2010. Status of biodiversity in the Baltic Sea. PLoS one, 5(9), e12467 • • https://doi.org/10.1371/journal.pone.0012467pl_PL
dc.references87. Palmowski P. 2021. The European Union Strategy for the Baltic Sea Region and accomplishments. Baltic Region, 13(1), 138-152. https://doi.org/10.5922/2079-8555-2021-1-8pl_PL
dc.references88. Paul, D. 2017. Research on heavy metal pollution of river Ganga: A review. Annals of Agrarian Science, 15(2), 278–286. https://doi.org/10.1016/j.aasci.2017.04.001pl_PL
dc.references89. Piwowarska, D., & Kiedrzyńska, E. 2022. Xenobiotics as a contemporary threat to surface waters. Ecohydrology & Hydrobiology, vol.2, Issue 2, p.337-354 https://doi.org/10.1016/j.ecohyd.2021.09.003pl_PL
dc.references90. Piwowarska, D., Kiedrzyńska, E., & Jaszczyszyn, K. 2024. A global perspective on the nature and fate of heavy metals polluting water ecosystems, and their impact and remediation. Critical Reviews in Environmental Science and Technology, 1-23. https://doi.org/10.1080/10643389.2024.2317112pl_PL
dc.references91. Popek, M., Dereszewska, A., & Dembska, G. 2021. Risk of heavy metals and their compounds pollution in Port Gdynia waters. Safety and Reliability of Systems and Processes., 305—315 DOI: 10.26408/srsp-2021-16pl_PL
dc.references92. Prasetya, A., Prihutami, P., Warisaura, A. D., Fahrurrozi, M., & Petrus, H. T. B. M. 2020. Characteristic of Hg removal using zeolite adsorption and Echinodorus palaefolius phytoremediation in subsurface flow constructed wetland (SSF-CW) model. Journal of Environmental Chemical Engineering, 8(3), 103781. https://doi.org/10.1016/j.jece.2020.103781pl_PL
dc.references93. R Core Team 2024. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/pl_PL
dc.references94. Rashmi, V., & Pratima, D. 2013. Heavy metal water pollution-A case study. Recent Res. Sci. Technol, 5(5), 98-99.pl_PL
dc.references95. Reckermann, M., Omstedt, A., Soomere, T., Aigars, J., Akhtar, N., Bełdowska, M., Bełdowski J., Cronin T, Czub M., Eero M., Hyytiäinen K.P., Jalkanen J.P., Kiessling A., Kjellström E., Kuliński K., Larsén X.G., McCrackin M., Meier H.E.M., Oberbeckmann S., Parnell K., Brauwer C., Poska A., Saarinen J., Szymczycha B., Undeman E, Wörman A. & Zorita, E. 2022. Human impacts and their interactions in the Baltic Sea region. Earth System Dynamics, 13(1), 1-80. https://doi.org/10.5194/esd-13-1-2022pl_PL
dc.references96. Rühling, Å., & Tyler, G. 2001. Changes in atmospheric deposition rates of heavy metals in Sweden a summary of nationwide Swedish surveys in 1968/70–1995. Water, Air and Soil Pollution: Focus, 1, 311-323. https://doi.org/10.1023/A:1017584928458pl_PL
dc.references97. Salonen, V. P., & Korkka-Niemi, K. 2007. Influence of parent sediments on the concentration of heavy metals in urban and suburban soils in Turku, Finland. Applied Geochemistry, 22(5), 906-918. https://doi.org/10.1016/j.apgeochem.2007.02.003pl_PL
dc.references98. Sandeep, G., Vijayalatha, K. R., & Anitha, T. 2019. Heavy metals and its impact in vegetable crops. Int J Chem Stud, 7(1), 1612-21.pl_PL
dc.references99. Scherer, U., Fuchs, S., Behrendt, H., & Hillenbrand, T. 2003. Emissions of heavy metals into river basins of Germany. Water science and technology, 47(7-8), 251-257. https://doi.org/10.2166/wst.2003.0696pl_PL
dc.references100. Sharma, R., & Malaviya, P. 2021. Management of stormwater pollution using green infrastructure: The role of rain gardens. Wiley Interdisciplinary Reviews: Water, 8(2), e1507. https://doi.org/10.1002/wat2.1507pl_PL
dc.references101. Shen, T., Tang, Y., Li, Y. J., Liu, Y., & Hu, H. 2020. An experimental study about the effects of phosphorus loading in river sediment on the transport of lead and cadmium at sediment-water interface. Science of the Total Environment, 720, 137535. https://doi.org/10.1016/j.scitotenv.2020.137535pl_PL
dc.references102. Sierra-Marquez, L., Espinosa-Araujo, J., Atencio-Garcia, V., & Olivero-Verbel, J. 2019. Effects of cadmium exposure on sperm and larvae of the neotropical fish Prochilodus magdalenae. Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP, 225, 108577. https://doi.org/10.1016/j.cbpc.2019.108577pl_PL
dc.references103. Singh, N., & Saxena, B. 2020. Behavioral and morphological changes in fresh water fish, Channa punctatus under the exposure of Cadmium. Environment Conservation Journal, 21(3), 187-193. https://doi.org/10.36953/ECJ.2020.21323pl_PL
dc.references104. Snoeijs-Leijonmalm, P., Andrén, E. 2017. Why is the Baltic Sea so special to live in?. In: Snoeijs-Leijonmalm, P., Schubert, H., Radziejewska, T. (eds) Biological Oceanography of the Baltic Sea. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0668-2_2pl_PL
dc.references105. Sommar, J., Osterwalder, S., & Zhu, W. 2020. Recent advances in understanding and measurement of Hg in the environment: Surface-atmosphere exchange of gaseous elemental mercury (Hg0). Science of the Total Environment, 721, 137648. https://doi.org/10.1016/j.scitotenv.2020.137648pl_PL
dc.references106. Sonone, S. S., Jadhav, S., Sankhla, M. S., & Kumar, R. 2020. Water contamination by heavy metals and their toxic effect on aquaculture and human health through food Chain. Lett. Appl. NanoBioScience, 10(2), 2148-2166. https://doi.org/10.33263/LIANBS102.21482166pl_PL
dc.references107. Soto-Ríos, P. C., León-Romero, M. A., Sukhbaatar, O., & Nishimura, O. 2018. Biosorption of mercury by Reed (Phragmites australis) as a potential clean water technology. Water, Air, & Soil Pollution, 229, 1-11. https://doi.org/10.1007/s11270-018-3978-8pl_PL
dc.references108. Strzebońska, M., Jarosz-Krzemińska, E., & Adamiec, E. 2017. Assessing historical mining and smelting effects on heavy metal pollution of river systems over span of two decades. Water, Air, & Soil Pollution, 228, 1-11. https://doi.org/10.1007/s11270-017-3327-3pl_PL
dc.references109. UNEP. 2023, November. Heavy metals. https://www.unep.org/cep/heavy-metalspl_PL
dc.references110. Vallius, H. 1999. Anthropogenically derived heavy metals in recent sediments of the Gulf of Finland, Baltic Sea. Chemosphere, 38(5), 945-962pl_PL
dc.references111. Vallius, H., & Leivuori, M. 2003. Classification of heavy metal contaminated sediments of the Gulf of Finland. Baltica, 16(1), 3-12.pl_PL
dc.references112. Ventura, D., Ferrante, M., Copat, C., Grasso, A., Milani, M., Sacco, A., Licciardello F. & Cirelli, G. L. 2021. Metal removal processes in a pilot hybrid constructed wetland for the treatment of semi-synthetic stormwater. Science of the Total Environment, 754, 142221. https://doi.org/10.1016/j.scitotenv.2020.142221pl_PL
dc.references113. Vijayaraghavan, K., & Raja, F. D. 2014. Design and development of green roof substrate to improve runoff water quality: Plant growth experiments and adsorption. Water research, 63, 94-101. https://doi.org/10.1016/j.watres.2014.06.012pl_PL
dc.references114. Walker, G. M., Hanna, J. A., & Allen, S. J. 2005. Treatment of hazardous shipyard wastewater using dolomitic sorbents. Water research, 39(11), 2422-2428. https://doi.org/10.1016/j.watres.2005.04.025pl_PL
dc.references115. Wang M., Tong Y., Chen C., Liu X., Lu Y., Zhang W., He W., Wang X., Zhao S., Lin Y. 2018. Ecological risk assessment to marine organisms induced by heavy metals in China's coastal waters. Marine pollution bulletin, 126, 349-356. https://doi.org/10.1016/j.marpolbul.2017.11.019pl_PL
dc.references116. Wängberg, I., Schmolke, S., Schager, P., Munthe, J., Ebinghaus, R., & Iverfeldt, Å. 2001. Estimates of air-sea exchange of mercury in the Baltic Sea. Atmospheric Environment, 35(32), 5477-5484. https://doi.org/10.1016/S1352-2310(01)00246-1pl_PL
dc.references117. Wei, T., & Simko, V. 2021. corrplot: Visualization of a Correlation Matrix. R package version 0.92. URLpl_PL
dc.references118. Wei, B., Yu, J., Cao, Z., Meng, M., Yang, L., & Chen, Q. 2020. The availability and accumulation of heavy metals in greenhouse soils associated with intensive fertilizer application. International Journal of Environmental Research and Public Health, 17(15), 5359. https://doi.org/10.3390/ijerph17155359pl_PL
dc.references119. Wickham, H. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York. DOI:10.1007/978-3-319-24277-4pl_PL
dc.references120. Wickham, H., et al. 2019. Welcome to the Tidyverse. Journal of Open Source Software, 4(43), 1686. DOI:10.21105/joss.01686pl_PL
dc.references121. Wilk, A., Romanowski, M., & Wiszniewska, B. 2021. Analysis of cadmium, mercury, and lead concentrations in erythrocytes of renal transplant recipients from northwestern Poland. Biology, 10(1), 62. https://doi.org/10.3390/biology10010062pl_PL
dc.references122. Winther, M. & Slentø, E. 2010: Heavy Metal Emissions for Danish Road Transport. National Environmental Research Institute, Aarhus University, Denmark. 99 pp. – NERI Technical Report no. 780. http://www.dmu.dk/Pub/FR780.pdfpl_PL
dc.references123. Wolf, P., & Cappai, M. G. 2021. Levels of Pb and Cd in single feeding stuffs and compound feeds for poultry. Biological Trace Element Research, 199, 1074-1079. https://doi.org/10.1007/s12011-020-02197-6pl_PL
dc.references124. Yan, J., Yang, P., Wang, B., Wu, S., Zhao, M., Zheng, X., Wamg Z., Zhang Y., & Fan, C. 2024. Green roof systems for rainwater and sewage treatment. Water, 16(15), 2090. https://doi.org/10.3390/w16152090pl_PL
dc.references125. Ytreberg, E., Eriksson, M., Maljutenko, I., Jalkanen, J. P., Johansson, L., Hassellöv, I. M., & Granhag, L. 2020. Environmental impacts of grey water discharge from ships in the Baltic Sea. Marine pollution bulletin, 152, 110891. https://doi.org/10.1016/j.marpolbul.2020.110891pl_PL
dc.references126. Zahoor, I., & Mushtaq, A. 2023. Water pollution from agricultural activities: A critical global review. Int. J. Chem. Biochem. Sci, 23(1), 164-176.pl_PL
dc.references127. Zalewski M., Kiedrzyńska E., Mankiewicz-Boczek J., Izydorczyk K., Jurczak T., Jarosiewicz P., 2020. Retain water, delay runoff. ACADEMIA-The magazine of the Polish Academy of Sciences, 58-61.pl_PL
dc.references128. Zhang, L., Tan, X., Chen, H., Liu, Y., & Cui, Z. 2022. Effects of agriculture and animal husbandry on heavy metal contamination in the aquatic environment and human health in Huangshui River Basin. Water, 14(4), 549. https://doi.org/10.3390/w14040549pl_PL
dc.references129. Zhou, Q. 2003. Interaction between heavy metals and nitrogen fertilizers applied to soil-vegetable systems. Bulletin of Environmental Contamination & Toxicology, 71(2). https://doi.org/10.1007/s00128-003-0169-zpl_PL
dc.references130. Zhou, Y. Q., Li, S. Y., Shi, Y. D., Lv, W., Shen, T. B., Huang, Q. L., Li Y.K. & Wu, Z. L. 2013. Phytoremediation of Chromium and Lead Using Water Lettuce Pistia stratiotes L. Applied Mechanics and Materials, 401, 2071-2075. https://doi.org/10.4028/www.scientific.net/AMM.401-403.2071pl_PL
dc.contributor.authorEmaile.kiedrzynska@erce.unesco.lodz.plpl_PL
dc.contributor.authorEmaild.matuszewska@erce.unesco.lodz.plpl_PL
dc.disciplinenauki biologicznepl_PL
dc.disciplinenauki o Ziemi i środowiskupl_PL


Pliki tej pozycji

Thumbnail
Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe