dc.contributor.author | Matuszewska, Dominika | |
dc.contributor.author | Kiedrzyńska, Edyta | |
dc.contributor.author | Jóźwik, Adam | |
dc.contributor.author | Kiedrzyński, Marcin | |
dc.date.accessioned | 2025-05-28T07:49:01Z | |
dc.date.available | 2025-05-28T07:49:01Z | |
dc.date.issued | 2025 | |
dc.identifier.uri | http://hdl.handle.net/11089/55647 | |
dc.description.abstract | The aim of the article was to determine the shares of individual Baltic countries participating in the inflow of metal loads to the Baltic Sea and identify patterns of similarity between these countries regarding the causes of heavy metal load generation.
The analyses used HELCOM and EUROSTAT data. The findings indicate that Finland and Sweden generate the highest total loads of heavy metals flowing in through rivers. However, Lithuania and Finland are distinguished by high metal loads calculated per km² of catchment area. Clustering countries in terms of their similarity in the heavy metal loads provided to the Baltic resulted in three groups. Finland and Lithuania generates the highest mean loads of cadmium, chromium, nickel and zinc per unit area [kg/km²/year]. Estonia and Latvia generates the highest mean annual loads of lead, mercury and copper. Poland, Germany and Sweden generates the lowest heavy metal loads.
Multidimensional data analysis showed a strong correlation between aquaculture production in the Baltic Sea catchment area, the number of cattle, beef, mutton, pigs, poultry, and meat produced from them, the amount of waste, trucks, cereal production, the use of nitrogen fertilizers, and the loads of heavy metals reaching the Baltic Sea with river waters.
Therefore, there is a need for continuous monitoring of the loads and transfer of heavy metals to the Baltic Sea, and for activities aimed at eliminating them from the environment. For this purpose, Nature-Based Solutions can be used, as they represent inexpensive, nature-friendly methods for removing pollutants from surface waters. | pl_PL |
dc.description.sponsorship | The research was conducted as part of the Farmikro Project, funded entirely by the National Science Centre, Poland, Opus 22 (Project No. 2021/43/B/ST10/01076). | pl_PL |
dc.language.iso | en | pl_PL |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe | * |
dc.rights | Uznanie autorstwa 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Baltic Sea catchment | pl_PL |
dc.subject | Baltic Sea surrounding countries | pl_PL |
dc.subject | Ecohydrology | pl_PL |
dc.subject | heavy metals | pl_PL |
dc.subject | Nature-Based Solutions | pl_PL |
dc.subject | water contamination | pl_PL |
dc.title | An analysis of catchment factors associated with heavy metal export into the Baltic Sea and Nature-Based Solutions aimed at its limitation | pl_PL |
dc.type | Preprint | pl_PL |
dc.page.number | 51 | pl_PL |
dc.contributor.authorAffiliation | University of Lodz, Doctoral School of Exact and Natural Sciences, Banacha 12/16, 90-237 Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364 Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | University of Lodz, Department of Computer Science, Faculty of Physics and Applied Informatics, Pomorska 149/153, 90-236 Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | University of Lodz, Faculty of Biology and Environmental Protection, Department of Biogeography, Paleoecology and Nature Conservation, Banacha 1/3, 90-237 Lodz, Poland | pl_PL |
dc.references | 1. Amos, H. M., Jacob, D. J., Streets, D. G., & Sunderland, E. M. 2013. Legacy impacts of all‐time anthropogenic emissions on the global mercury cycle. Global biogeochemical cycles, 27(2), 410-421. https://doi.org/10.1002/gbc.20040 | pl_PL |
dc.references | 2. Anning, A. K., Korsah, P. E., & Addo-Fordjour, P. 2013. Phytoremediation of wastewater with Limnocharis flava, Thalia geniculata and Typha latifolia in constructed wetlands. International journal of phytoremediation, 15(5), 452-464. https://doi.org/10.1080/15226514.2012.716098 | pl_PL |
dc.references | 3. Apler, A., & Josefsson, S. 2016. Swedish status and trend monitoring programme chemical contamination in offshore sediments 2003–2014. Swedish status and trend monitoring programme SGU-rapport 2016:04 urn:nbn:se:naturvardsverket:diva-6630 | pl_PL |
dc.references | 4. Bełdowska, M., Saniewska, D., & Falkowska, L. 2014. Factors influencing variability of mercury input to the southern Baltic Sea. Marine Pollution Bulletin, 86(1-2), 283-290. https://doi.org/10.1016/j.marpolbul.2014.07.004 | pl_PL |
dc.references | 5. Berg, K., Puntervoll, P., Valdersnes, S., & Goksøyr, A. 2010. Responses in the brain proteome of Atlantic cod (Gadus morhua) exposed to methylmercury. Aquatic Toxicology (Amsterdam, Netherlands), 100(1), 51–65. https://doi.org/10.1016/j.aquatox.2010.07.008 | pl_PL |
dc.references | 6. Bianchi, E., Coppi, A., Nucci, S., Antal, A., Berardi, C., Coppini, E., Fibbi D., Del Bubba M., Gonnelli C. & Colzi, I. 2021. Closing the loop in a constructed wetland for the improvement of metal removal: the use of Phragmites australis biomass harvested from the system as biosorbent. Environmental Science and Pollution Research, 28, 11444-11453. https://doi.org/10.1007/s11356-020-11291-0 | pl_PL |
dc.references | 7. Buszewski, B., & Kowalkowski, T. 2003. Poland’s environment-past, present and future state of the environment in the vistula and odra river basins. Environmental Science and Pollution Research, 10, 343-349. https://doi.org/10.1065/espr2003.11.177 | pl_PL |
dc.references | 8. Chen, Q.-L., Sun, Y.-L., Liu, Z.-H., & Li, Y.-W. 2017. Sex-dependent effects of subacute mercuric chloride exposure on histology, antioxidant status and immune-related gene expression in the liver of adult zebrafish (Danio rerio). Chemosphere, 188, 1–9. https://doi.org/10.1016/j.chemosphere.2017.08.148 | pl_PL |
dc.references | 9. Chen, H., Wu, D., Wang, Q., Fang, L., Wang, Y., Zhan, C., Zhang J., Zhang S., Cao J.,Qi S., & Liu, S. 2022. The predominant sources of heavy metals in different types of fugitive dust determined by principal component analysis (PCA) and positive matrix factorization (PMF) modeling in Southeast Hubei: a typical mining and metallurgy area in Central China. International Journal of Environmental Research and Public Health, 19(20), 13227. https://doi.org/10.3390/ijerph192013227 | pl_PL |
dc.references | 10. Cullen, J. T., & Maldonado, M. T. 2012. Biogeochemistry of cadmium and its release to the environment. Cadmium: from toxicity to essentiality, 31-62. https://doi.org/10.1007/978-94-007-5179-8_2 | pl_PL |
dc.references | 11. Ding, Q., Cheng, G., Wang, Y., & Zhuang, D. 2017. Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions. Science of the Total Environment, 578, 577-585. https://doi.org/10.1016/j.scitotenv.2016.11.001 | pl_PL |
dc.references | 12. Dixit, R., Wasiullah, Malaviya, D., Pandiyan, K., Singh, U., Sahu, A., Shukla, R., Singh, B., Rai, J., Sharma, P., Lade, H., Paul, D. 2015. Bioremediation of heavy metals from soil and aquatic environment: An overview of prin¬ciples and criteria of fundamental processes. Sustainability, 7(2), 2189–2212. https://doi.org/10.3390/su7022189 | pl_PL |
dc.references | 13. Egirani, D., Latif, M. T., Wessey, N., Poyi, N. R., & Shehata, N. 2021. Preparation and characterization of powdered and granular activated carbon from Palmae biomass for mercury removal. Applied Water Science, 11, 1-11. DOI:10.1007/s13201-020-01343-8 | pl_PL |
dc.references | 14. Ekholm, P., Lehtoranta, J., Taka, M., Sallantaus, T., & Riihimäki, J. 2020. Diffuse sources dominate the sulfate load into Finnish surface waters. Science of the Total Environment, 748, 141297. https://doi.org/10.1016/j.scitotenv.2020.141297 | pl_PL |
dc.references | 15. ESaTDOR European Seas and Territorial Development, Opportunities and Risks ANNEX 4 to the Scientific Report:\ Baltic Sea Regional Profile; 2013\ | pl_PL |
dc.references | 16. Etteieb, S., Zolfaghari, M., Magdouli, S., Brar, K. K., & Brar, S. K. (2021). Performance of constructed wetland for selenium, nutrient and heavy metals removal from mine effluents. Chemosphere, 281, 130921. https://doi.org/10.1016/j.chemosphere.2021.130921 | pl_PL |
dc.references | 17. European Union . 2000. Water Framework Directive 2000/60/EC of the European Parliament and of the Council of 23 October, 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Union, 43(L 327), 1–51. https://eur-lex.europa.eu/legal-content/en/NIM/?uri=oj:JOL_2000_327_R_0001_01 | pl_PL |
dc.references | 18. European Union. 2008. Marine Strategy Framework Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy https://eur-lex.europa.eu/eli/dir/2008/56/oj/eng | pl_PL |
dc.references | 19. European Union. 2013. Council Directive 2013/39/EU of the European Parliament and of the Council of 12 August, 2013; amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Official Journal of the European Union, 56(L 226), 1–17. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:226:0001:0017:en:PDF | pl_PL |
dc.references | 20. EUROSTAT. 2013. Agriculture, forestry and fishery statistics, ISSN 1977-2262, doi: 10.2785/45595 | pl_PL |
dc.references | 21. EUROSTAT. 2014. Agriculture, forestry and fishery statistics, ISSN 2363-2488, doi: 10.2785/59171 | pl_PL |
dc.references | 22. EUROSTAT. 2015a. Energy, transport and environment indicators, ISSN 2363-2372, doi: 10.2785/547816 | pl_PL |
dc.references | 23. EUROSTAT. 2015b. Agriculture, forestry and fishery statistics, ISSN 2363-2488, doi: 10.2785/906420 | pl_PL |
dc.references | 24. EUROSTAT. 2016a. Energy, transport and environment indicators, ISSN 1725-4566, doi: 10.2785/260003 | pl_PL |
dc.references | 25. EUROSTAT. 2016b. Agriculture, forestry and fishery statistics, ISSN 2363-2488, doi: 10.2785/917017 | pl_PL |
dc.references | 26. EUROSTAT. 2017a. Energy, transport and environment indicators, ISSN 2363-2372 doi:10.2785/964100 | pl_PL |
dc.references | 27. EUROSTAT. 2017b. Agriculture, forestry and fishery statistics, ISSN 2363-2488 doi:10.2785/570022 | pl_PL |
dc.references | 28. EUROSTAT. 2018a. Energy, transport and environment indicators, ISSN 2363-2372 doi:10.2785/94549 | pl_PL |
dc.references | 29. EUROSTAT. 2018. Agriculture, forestry and fishery statistics, ISSN 2363-2488 doi:10.2785/340432 | pl_PL |
dc.references | 30. Feng, Y. X., Yu, X. Z., & Zhang, H. 2021. A modelling study of a buffer zone in abating heavy metal contamination from a gold mine of Hainan Province in nearby agricultural area. Journal of Environmental Management, 287, 112299. https://doi.org/10.1016/j.jenvman.2021.112299 | pl_PL |
dc.references | 31. Ferreira, A. J., Soares, D., Serrano, L. M., Walsh, R. P., Dias-Ferreira, C., & Ferreira, C. S. 2016. Roads as sources of heavy metals in urban areas. The Covões catchment experiment, Coimbra, Portugal. Journal of Soils and Sediments, 16, 2622-2639. https://doi.org/10.1007/s11368-016-1492-4 | pl_PL |
dc.references | 32. Galili, T. 2015. dendextend: An R package for visualizing, adjusting, and comparing trees of hierarchical clustering. Bioinformatics, 31(22), 3718–3720. DOI: 10.1093/bioinformatics/btv428 | pl_PL |
dc.references | 33. Garnaga, G. 2012. Integrated assessment of pollution in the Baltic Sea. Ekologija, 58(3). DOI:10.6001/ekologija.v58i3.2531 | pl_PL |
dc.references | 34. Golmaei, M., Kinnarinen, T., Jernström, E., & Häkkinen, A. 2018. Extraction of hazardous metals from green liquor dregs by ethylenediaminetetraacetic acid. Journal of environmental management, 212, 219-227. https://doi.org/10.1016/j.jenvman.2018.01.078 | pl_PL |
dc.references | 35. Good, J. F., O'Sullivan, A. D., Wicke, D., & Cochrane, T. A. 2012. Contaminant removal and hydraulic conductivity of laboratory rain garden systems for stormwater treatment. Water science and technology, 65(12), 2154-2161. https://doi.org/10.2166/wst.2012.135 | pl_PL |
dc.references | 36. Guan, X., Wang, J., & Xiao, F. 2021. Sponge city strategy and application of pavement materials in sponge city. Journal of Cleaner Production, 303, 127022. https://doi.org/10.1016/j.jclepro.2021.127022 | pl_PL |
dc.references | 37. Guo, S.-N., Zheng, J.-L., Yuan, S.-S., & Zhu, Q.-L. 2018. Effects of heat and cadmium exposure on stress-related responses in the liver of female zebrafish: Heat increases cadmium toxicity. The Science of the Total Environment, 618, 1363–1370. https://doi.org/10.1016/j.scitotenv.2017.09.264 | pl_PL |
dc.references | 38. HELCOM 2018a: State of the Baltic Sea – Second HELCOM holistic assessment 2011-2016. Baltic Sea Environment Proceedings 155. | pl_PL |
dc.references | 39. HELCOM. 2018b. Inputs of hazardous substances to the Baltic Sea. Baltic Sea Environment Proceedings No. 162 | pl_PL |
dc.references | 40. HELCOM. 2018c. Input of nutrients by the seven biggest rivers in the Baltic Sea region. Baltic Sea Environment Proceedings No. 161 | pl_PL |
dc.references | 41. HELCOM. 2019. Background information on the Baltic Sea catchment area for the Sixth Baltic Sea Pollution load compilation (PLC-6) | pl_PL |
dc.references | 42. HELCOM. 2021a. Inputs of hazardous substances to the Baltic Sea. Baltic Sea Environment Proceedings No. 179 | pl_PL |
dc.references | 43. HELCOM.2021b. Baltic Sea Action Plan 2021 update | pl_PL |
dc.references | 44. HELCOM. 2021c. Applied methodology for the PLC-7 assessment. | pl_PL |
dc.references | 45. HELCOM. 2021d. Background information on the Baltic Sea catchment area for the Seventh Baltic Sea Pollution load compilation (PLC-7) | pl_PL |
dc.references | 46. HELCOM. 2024. Inputs of hazardous substances to the Baltic Sea (PLC-8). Baltic Sea Environment Proceedings n°196. | pl_PL |
dc.references | 47. Huang, W., Cao, L., Shan, X., Lin, L., & Dou, S. 2011. Toxicity testing of waterborne mercury with red sea bream (Pagrus major) embryos and larvae. Bulletin of Environmental Contamination and Toxicology, 86(4), 398–405. https://doi.org/10.1007/s00128-011-0238-7 | pl_PL |
dc.references | 48. Ishchenko, V. A. 2018. Environment contamination with heavy metals contained in waste. Environmental Problems. Vol. 3, No. 1: 21-24. | pl_PL |
dc.references | 49. Izydorczyk K., Michalska-Hejduk D., Frączak W., Bednarek A., Łapińska M., Jarosiewicz P., Kosińska A. Zalewski M.. 2015. Strefy buforowe i biotechnologie ekohydrologiczne. W ograniczeniu zanieczyszczeń obszarowych. Europejskie Regionalne Centrum Ekohydrologii Polskiej Akademii Nauk ISBN: 9788392824510 | pl_PL |
dc.references | 50. Jachimowicz, P., Radzevičius, A., Wojnarová, P., Šadzevičius, R., Horoszko, B., Dapkienė, M., Radziemska M., Klik, B. 2025. Two decades of heavy metal fluctuations in wastewater sludge in Lithuania with evolving trends and implications for treatment efficiency. Journal of Geochemical Exploration, 269, 107642. https://doi.org/10.1016/j.gexplo.2024.107642 | pl_PL |
dc.references | 51. Jarosiewicz, P., Font-Najera, A., Mankiewicz-Boczek, J., Chamerska, A., Amalfitano, S., Fazi, S., & Jurczak, T. 2024. Stormwater treatment in constrained urban spaces through a hybrid Sequential Sedimentation Biofiltration System. Chemosphere, 367, 143696. https://doi.org/10.1016/j.chemosphere.2024.143696 | pl_PL |
dc.references | 52. Jaskuła, J., & Sojka, M. 2022. Assessment of spatial distribution of sediment contamination with heavy metals in the two biggest rivers in Poland. Catena, 211, 105959. https://doi.org/10.1016/j.catena.2021.105959 | pl_PL |
dc.references | 53. Kałmykow-Piwińska, A., & Falkowska, E. 2024. The Diversity of Geochemical and Ecotoxicological Indices of Alluvial Deposits Reflects the Pattern of Landforms: The Case of the Vistula River Valley in the Małopolski Gorge (Poland). Water, 17(1), 64 https://doi.org/10.3390/w17010064 | pl_PL |
dc.references | 54. Karnib, M., Kabbani, A., Holail, H., & Olama, Z. 2014. Heavy metals removal using activated carbon, silica and silica activated carbon composite. Energy Procedia, 50, 113-120. https://doi.org/10.1016/j.egypro.2014.06.014 | pl_PL |
dc.references | 55. Kassambara, A. 2019. ggcorrplot: Visualization of a Correlation Matrix Using ggplot2. R package version 0.1.3. URL https://CRAN.R-project.org/package=ggcorrplot | pl_PL |
dc.references | 56. Kassambara, A., & Mundt, F. 2020. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7. URL https://CRAN.R-project.org/package=factoextra | pl_PL |
dc.references | 57. Kassambara, A. 2021. rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R package version 0.7.0. URL https://CRAN.R-project.org/package=rstatix. | pl_PL |
dc.references | 58. Kassambara, A. 2022. Ggpubr: ‘Ggplot2’ Based Publication Ready Plots. https://cran.r-project.org/web/packages/ggpubr/index.html | pl_PL |
dc.references | 59. Kiedrzyńska, E., Belka, K., Jarosiewicz, P., Kiedrzyński, M., & Zalewski, M. 2021. The enhancement of valley water retentiveness in climate change conditions. The Science of the Total Environment, 799, 149427. https://doi.org/10.1016/j.scitotenv.2021.149427 | pl_PL |
dc.references | 60. Kiedrzyńska, E., Jóźwik, A., Kiedrzyński, M., & Zalewski, M. 2014. Hierarchy of factors exerting an impact on nutrient load of the Baltic Sea and sustainable management of its drainage basin. Marine Pollution Bulletin, 88(1-2), 162-173. https://doi.org/10.1016/j.marpolbul.2014.09.010 | pl_PL |
dc.references | 61. Kiedrzyńska, E., Urbaniak, M., Kiedrzyński, M., Jóźwik, A., Bednarek, A., Gągała, I., & Zalewski, M. 2017. The use of a hybrid Sequential Biofiltration System for the improvement of nutrient removal and PCB control in municipal wastewater. Scientific reports, 7(1), 5477. https://doi.org/10.1038/s41598-017-05555-y | pl_PL |
dc.references | 62. Klavinš, M., Briede, A., Rodinov, V., Kokorite, I., Parele, E., & Klavina, I. 2000. Heavy metals in rivers of Latvia. Science of the Total Environment, 262(1-2), 175-183. https://doi.org/10.1016/S0048-9697(00)00597-0 | pl_PL |
dc.references | 63. Knox, A. S., Paller, M. H., Seaman, J. C., Mayer, J., & Nicholson, C. 2021. Removal, distribution and retention of metals in a constructed wetland over 20 years. Science of The Total Environment, 796, 149062. https://doi.org/10.1016/j.scitotenv.2021.149062 | pl_PL |
dc.references | 64. Kruopiene, J. 2007. Distribution of Heavy Metals in Sediments of the Nemunas River (Lithuania). Polish Journal of Environmental Studies, 16(5). | pl_PL |
dc.references | 65. Kuang, C., Shan, Y., Gu, J., Shao, H., Zhang, W., Zhang, Y., Zhang, J. & Liu, H. 2016. Assessment of heavy metal contamination in water body and riverbed sediments of the Yanghe River in the Bohai Sea, China. Environmental Earth Sciences, 75, 1-13. https://doi.org/10.1007/s12665-016-5902-0 | pl_PL |
dc.references | 66. Kuprijanov I., Väli G., Sharov A., Berezina N., Liblik T., Lips U., Kolesova N., Maanio J., Junttila V., Lips I. 2021. Hazardous substances in the sediments and their pathways from potential sources in the eastern Gulf of Finland. Marine Pollution Bulletin, 170, 112642. https://doi.org/10.1016/j.marpolbul.2021.112642 | pl_PL |
dc.references | 67. Kumar, V., Singh, J., Saini, A., & Kumar, P. 2019. Phytoremediation of copper, iron and mercury from aqueous solution by water lettuce (Pistia stratiotes L.). Environmental Sustainability, 2, 55-65 https://doi.org/10.1007/s42398-019-00050-8 | pl_PL |
dc.references | 68. Kumari, M., & Tripathi, B. D. 2015. Efficiency of Phragmites australis and Typha latifolia for heavy metal removal from wastewater. Ecotoxicology and environmental safety, 112, 80-86 https://doi.org/10.1016/j.ecoenv.2014.10.034 | pl_PL |
dc.references | 69. Lê, S., Josse, J., & Husson, F. 2008. FactoMineR: An R package for multivariate analysis. Journal of Statistical Software, 25(1), 1–18. DOI 10.18637/jss.v025.i01 | pl_PL |
dc.references | 70. Lindqvist, O., Johansson, K., Bringmark, L., Timm, B., Aastrup, M., Andersson, A., Bringmark L., Hovsenius G., Håkanson L., Iverfeldt Å., & Meili, M. 1991. Mercury in the Swedish environment—recent research on causes, consequences and corrective methods. Water, Air, and Soil Pollution, 55, xi-261. https://doi.org/10.1007/BF00542429 | pl_PL |
dc.references | 71. Lodenius M. 2016. Factors affecting metal and radionuclide pollution in the Baltic sea. European Journal of Environmental Sciences, 6(2). https://doi.org/10.14712/23361964.2016.13 | pl_PL |
dc.references | 72. Louekari, K., Mäkelä-Kurtto, R., Pasanen, J., Virtanen, V., Sippola, J., & Malm, J. 2000. Cadmium in fertilizers. risks to human health and the environment. http://urn.fi/URN:ISBN:952-453-020-1 | pl_PL |
dc.references | 73. Luo, J. Z., Sheng, B. X., & Shi, Q. Q. 2020. A review on the migration and transformation of heavy metals influence by alkali/alkaline earth metals during combustion. Journal of Fuel Chemistry and Technology, 48(11), 1318-1326. https://doi.org/10.1016/S1872-5813(20)30088-8 | pl_PL |
dc.references | 74. Mackenzie, J. S., & Jeggo, M. 2019. The one health approach—why is it so important?. Tropical medicine and infectious disease, 4(2), 88. https://doi.org/10.3390/tropicalmed4020088 | pl_PL |
dc.references | 75. Maine, M. A., Duarte, M. V., & Suñé, N. L. 2001. Cadmium uptake by floating macrophytes. Water research, 35(11), 2629-2634. https://doi.org/10.1016/S0043-1354(00)00557-1 | pl_PL |
dc.references | 76. Makridis C., Svarnas C., Rigas N., Gougoulias N., Roka L., Leontopoulos S. 2012. Transfer of heavy metal contaminants from animal feed to animal products. Journal of Agricultural Science and Technology. A, 2, 149-154. | pl_PL |
dc.references | 77. Manzetti, S. 2020. Heavy Metal Pollution in the Baltic Sea, from the North European Coast to the Baltic States, Finland and the Swedish Coastline to Norway. Fjordforsk AS Tech. Rep. 2020, 6, 90. DOI:10.13140/RG.2.2.11144.85769/1 | pl_PL |
dc.references | 78. Marchand, L., Mench, M., Jacob, D. L., & Otte, M. L. 2010. Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: A review. Environmental pollution, 158(12), 3447-3461. https://doi.org/10.1016/j.envpol.2010.08.018 | pl_PL |
dc.references | 79. Melamed, R., & Da Luz, A. B. 2006. Efficiency of industrial minerals on the removal of mercury species from liquid effluents. Science of the total environment, 368(1), 403-406. https://doi.org/10.1016/j.scitotenv.2005.09.091 | pl_PL |
dc.references | 80. Merrikhpour, H., & Jalali, M. 2013. Comparative and competitive adsorption of cadmium, copper, nickel, and lead ions by Iranian natural zeolite. Clean Technologies and Environmental Policy, 15, 303-316. https://doi.org/10.1007/s10098-012-0522-1 | pl_PL |
dc.references | 81. Moiseenko, T. I., & Gashkina, N. A. 2018. Biogeochemistry of cadmium: anthropogenic dispersion, bioaccumulation, and ecotoxicity. Geochemistry International, 56, 798-811. https://doi.org/10.1134/S0016702918080062 | pl_PL |
dc.references | 82. Mukherjee, A. G., Wanjari, U. R., Renu, K., Vellingiri, B., & Gopalakrishnan, A. V. 2022. Heavy metal and metalloid-induced reproductive toxicity. Environmental Toxicology and Pharmacology, 92, 103859. https://doi.org/10.1016/j.etap.2022.103859 | pl_PL |
dc.references | 83. Müller, A. 1999. Distribution of heavy metals in recent sediments in the Archipelago Sea of southwestern Finland. Boreal environment research, 4(4), 319-330. https://doi.org/10.1016/j.oceano.2017.11.001 | pl_PL |
dc.references | 84. Napa, Ü., Kabral, N., Liiv, S., Asi, E., Timmusk, T., & Frey, J. 2015. Current and historical patterns of heavy metals pollution in Estonia as reflected in natural media of different ages: ICP Vegetation, ICP Forests and ICP Integrated Monitoring data. Ecological Indicators, 52, 31-39. https://doi.org/10.1016/j.ecolind.2014.11.028 | pl_PL |
dc.references | 85. Ning-jing, H., Peng, H., Hui, Z., Ai-mei, Z., Ji-hua, L., Jun, Z., & Lian-hua, H. 2015. Anthropogenic Pb input into Bohai Bay, China: Evidence from stable Pb isotopic compositions in sediments. Continental Shelf Research, 109, 188-197. https://doi.org/10.1016/j.csr.2015.09.004 | pl_PL |
dc.references | 86. Ojaveer, H., Jaanus, A., MacKenzie, B. R., Martin, G., Olenin, S., Radziejewska, T., Telesh I., Zettler M.L., & Zaiko, A. 2010. Status of biodiversity in the Baltic Sea. PLoS one, 5(9), e12467 • • https://doi.org/10.1371/journal.pone.0012467 | pl_PL |
dc.references | 87. Palmowski P. 2021. The European Union Strategy for the Baltic Sea Region and accomplishments. Baltic Region, 13(1), 138-152. https://doi.org/10.5922/2079-8555-2021-1-8 | pl_PL |
dc.references | 88. Paul, D. 2017. Research on heavy metal pollution of river Ganga: A review. Annals of Agrarian Science, 15(2), 278–286. https://doi.org/10.1016/j.aasci.2017.04.001 | pl_PL |
dc.references | 89. Piwowarska, D., & Kiedrzyńska, E. 2022. Xenobiotics as a contemporary threat to surface waters. Ecohydrology & Hydrobiology, vol.2, Issue 2, p.337-354 https://doi.org/10.1016/j.ecohyd.2021.09.003 | pl_PL |
dc.references | 90. Piwowarska, D., Kiedrzyńska, E., & Jaszczyszyn, K. 2024. A global perspective on the nature and fate of heavy metals polluting water ecosystems, and their impact and remediation. Critical Reviews in Environmental Science and Technology, 1-23. https://doi.org/10.1080/10643389.2024.2317112 | pl_PL |
dc.references | 91. Popek, M., Dereszewska, A., & Dembska, G. 2021. Risk of heavy metals and their compounds pollution in Port Gdynia waters. Safety and Reliability of Systems and Processes., 305—315 DOI: 10.26408/srsp-2021-16 | pl_PL |
dc.references | 92. Prasetya, A., Prihutami, P., Warisaura, A. D., Fahrurrozi, M., & Petrus, H. T. B. M. 2020. Characteristic of Hg removal using zeolite adsorption and Echinodorus palaefolius phytoremediation in subsurface flow constructed wetland (SSF-CW) model. Journal of Environmental Chemical Engineering, 8(3), 103781. https://doi.org/10.1016/j.jece.2020.103781 | pl_PL |
dc.references | 93. R Core Team 2024. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ | pl_PL |
dc.references | 94. Rashmi, V., & Pratima, D. 2013. Heavy metal water pollution-A case study. Recent Res. Sci. Technol, 5(5), 98-99. | pl_PL |
dc.references | 95. Reckermann, M., Omstedt, A., Soomere, T., Aigars, J., Akhtar, N., Bełdowska, M., Bełdowski J., Cronin T, Czub M., Eero M., Hyytiäinen K.P., Jalkanen J.P., Kiessling A., Kjellström E., Kuliński K., Larsén X.G., McCrackin M., Meier H.E.M., Oberbeckmann S., Parnell K., Brauwer C., Poska A., Saarinen J., Szymczycha B., Undeman E, Wörman A. & Zorita, E. 2022. Human impacts and their interactions in the Baltic Sea region. Earth System Dynamics, 13(1), 1-80. https://doi.org/10.5194/esd-13-1-2022 | pl_PL |
dc.references | 96. Rühling, Å., & Tyler, G. 2001. Changes in atmospheric deposition rates of heavy metals in Sweden a summary of nationwide Swedish surveys in 1968/70–1995. Water, Air and Soil Pollution: Focus, 1, 311-323. https://doi.org/10.1023/A:1017584928458 | pl_PL |
dc.references | 97. Salonen, V. P., & Korkka-Niemi, K. 2007. Influence of parent sediments on the concentration of heavy metals in urban and suburban soils in Turku, Finland. Applied Geochemistry, 22(5), 906-918. https://doi.org/10.1016/j.apgeochem.2007.02.003 | pl_PL |
dc.references | 98. Sandeep, G., Vijayalatha, K. R., & Anitha, T. 2019. Heavy metals and its impact in vegetable crops. Int J Chem Stud, 7(1), 1612-21. | pl_PL |
dc.references | 99. Scherer, U., Fuchs, S., Behrendt, H., & Hillenbrand, T. 2003. Emissions of heavy metals into river basins of Germany. Water science and technology, 47(7-8), 251-257. https://doi.org/10.2166/wst.2003.0696 | pl_PL |
dc.references | 100. Sharma, R., & Malaviya, P. 2021. Management of stormwater pollution using green infrastructure: The role of rain gardens. Wiley Interdisciplinary Reviews: Water, 8(2), e1507. https://doi.org/10.1002/wat2.1507 | pl_PL |
dc.references | 101. Shen, T., Tang, Y., Li, Y. J., Liu, Y., & Hu, H. 2020. An experimental study about the effects of phosphorus loading in river sediment on the transport of lead and cadmium at sediment-water interface. Science of the Total Environment, 720, 137535. https://doi.org/10.1016/j.scitotenv.2020.137535 | pl_PL |
dc.references | 102. Sierra-Marquez, L., Espinosa-Araujo, J., Atencio-Garcia, V., & Olivero-Verbel, J. 2019. Effects of cadmium exposure on sperm and larvae of the neotropical fish Prochilodus magdalenae. Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP, 225, 108577. https://doi.org/10.1016/j.cbpc.2019.108577 | pl_PL |
dc.references | 103. Singh, N., & Saxena, B. 2020. Behavioral and morphological changes in fresh water fish, Channa punctatus under the exposure of Cadmium. Environment Conservation Journal, 21(3), 187-193. https://doi.org/10.36953/ECJ.2020.21323 | pl_PL |
dc.references | 104. Snoeijs-Leijonmalm, P., Andrén, E. 2017. Why is the Baltic Sea so special to live in?. In: Snoeijs-Leijonmalm, P., Schubert, H., Radziejewska, T. (eds) Biological Oceanography of the Baltic Sea. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0668-2_2 | pl_PL |
dc.references | 105. Sommar, J., Osterwalder, S., & Zhu, W. 2020. Recent advances in understanding and measurement of Hg in the environment: Surface-atmosphere exchange of gaseous elemental mercury (Hg0). Science of the Total Environment, 721, 137648. https://doi.org/10.1016/j.scitotenv.2020.137648 | pl_PL |
dc.references | 106. Sonone, S. S., Jadhav, S., Sankhla, M. S., & Kumar, R. 2020. Water contamination by heavy metals and their toxic effect on aquaculture and human health through food Chain. Lett. Appl. NanoBioScience, 10(2), 2148-2166. https://doi.org/10.33263/LIANBS102.21482166 | pl_PL |
dc.references | 107. Soto-Ríos, P. C., León-Romero, M. A., Sukhbaatar, O., & Nishimura, O. 2018. Biosorption of mercury by Reed (Phragmites australis) as a potential clean water technology. Water, Air, & Soil Pollution, 229, 1-11. https://doi.org/10.1007/s11270-018-3978-8 | pl_PL |
dc.references | 108. Strzebońska, M., Jarosz-Krzemińska, E., & Adamiec, E. 2017. Assessing historical mining and smelting effects on heavy metal pollution of river systems over span of two decades. Water, Air, & Soil Pollution, 228, 1-11. https://doi.org/10.1007/s11270-017-3327-3 | pl_PL |
dc.references | 109. UNEP. 2023, November. Heavy metals. https://www.unep.org/cep/heavy-metals | pl_PL |
dc.references | 110. Vallius, H. 1999. Anthropogenically derived heavy metals in recent sediments of the Gulf of Finland, Baltic Sea. Chemosphere, 38(5), 945-962 | pl_PL |
dc.references | 111. Vallius, H., & Leivuori, M. 2003. Classification of heavy metal contaminated sediments of the Gulf of Finland. Baltica, 16(1), 3-12. | pl_PL |
dc.references | 112. Ventura, D., Ferrante, M., Copat, C., Grasso, A., Milani, M., Sacco, A., Licciardello F. & Cirelli, G. L. 2021. Metal removal processes in a pilot hybrid constructed wetland for the treatment of semi-synthetic stormwater. Science of the Total Environment, 754, 142221. https://doi.org/10.1016/j.scitotenv.2020.142221 | pl_PL |
dc.references | 113. Vijayaraghavan, K., & Raja, F. D. 2014. Design and development of green roof substrate to improve runoff water quality: Plant growth experiments and adsorption. Water research, 63, 94-101. https://doi.org/10.1016/j.watres.2014.06.012 | pl_PL |
dc.references | 114. Walker, G. M., Hanna, J. A., & Allen, S. J. 2005. Treatment of hazardous shipyard wastewater using dolomitic sorbents. Water research, 39(11), 2422-2428. https://doi.org/10.1016/j.watres.2005.04.025 | pl_PL |
dc.references | 115. Wang M., Tong Y., Chen C., Liu X., Lu Y., Zhang W., He W., Wang X., Zhao S., Lin Y. 2018. Ecological risk assessment to marine organisms induced by heavy metals in China's coastal waters. Marine pollution bulletin, 126, 349-356. https://doi.org/10.1016/j.marpolbul.2017.11.019 | pl_PL |
dc.references | 116. Wängberg, I., Schmolke, S., Schager, P., Munthe, J., Ebinghaus, R., & Iverfeldt, Å. 2001. Estimates of air-sea exchange of mercury in the Baltic Sea. Atmospheric Environment, 35(32), 5477-5484. https://doi.org/10.1016/S1352-2310(01)00246-1 | pl_PL |
dc.references | 117. Wei, T., & Simko, V. 2021. corrplot: Visualization of a Correlation Matrix. R package version 0.92. URL | pl_PL |
dc.references | 118. Wei, B., Yu, J., Cao, Z., Meng, M., Yang, L., & Chen, Q. 2020. The availability and accumulation of heavy metals in greenhouse soils associated with intensive fertilizer application. International Journal of Environmental Research and Public Health, 17(15), 5359. https://doi.org/10.3390/ijerph17155359 | pl_PL |
dc.references | 119. Wickham, H. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York. DOI:10.1007/978-3-319-24277-4 | pl_PL |
dc.references | 120. Wickham, H., et al. 2019. Welcome to the Tidyverse. Journal of Open Source Software, 4(43), 1686. DOI:10.21105/joss.01686 | pl_PL |
dc.references | 121. Wilk, A., Romanowski, M., & Wiszniewska, B. 2021. Analysis of cadmium, mercury, and lead concentrations in erythrocytes of renal transplant recipients from northwestern Poland. Biology, 10(1), 62. https://doi.org/10.3390/biology10010062 | pl_PL |
dc.references | 122. Winther, M. & Slentø, E. 2010: Heavy Metal Emissions for Danish Road Transport. National Environmental Research Institute, Aarhus University, Denmark. 99 pp. – NERI Technical Report no. 780. http://www.dmu.dk/Pub/FR780.pdf | pl_PL |
dc.references | 123. Wolf, P., & Cappai, M. G. 2021. Levels of Pb and Cd in single feeding stuffs and compound feeds for poultry. Biological Trace Element Research, 199, 1074-1079. https://doi.org/10.1007/s12011-020-02197-6 | pl_PL |
dc.references | 124. Yan, J., Yang, P., Wang, B., Wu, S., Zhao, M., Zheng, X., Wamg Z., Zhang Y., & Fan, C. 2024. Green roof systems for rainwater and sewage treatment. Water, 16(15), 2090. https://doi.org/10.3390/w16152090 | pl_PL |
dc.references | 125. Ytreberg, E., Eriksson, M., Maljutenko, I., Jalkanen, J. P., Johansson, L., Hassellöv, I. M., & Granhag, L. 2020. Environmental impacts of grey water discharge from ships in the Baltic Sea. Marine pollution bulletin, 152, 110891. https://doi.org/10.1016/j.marpolbul.2020.110891 | pl_PL |
dc.references | 126. Zahoor, I., & Mushtaq, A. 2023. Water pollution from agricultural activities: A critical global review. Int. J. Chem. Biochem. Sci, 23(1), 164-176. | pl_PL |
dc.references | 127. Zalewski M., Kiedrzyńska E., Mankiewicz-Boczek J., Izydorczyk K., Jurczak T., Jarosiewicz P., 2020. Retain water, delay runoff. ACADEMIA-The magazine of the Polish Academy of Sciences, 58-61. | pl_PL |
dc.references | 128. Zhang, L., Tan, X., Chen, H., Liu, Y., & Cui, Z. 2022. Effects of agriculture and animal husbandry on heavy metal contamination in the aquatic environment and human health in Huangshui River Basin. Water, 14(4), 549. https://doi.org/10.3390/w14040549 | pl_PL |
dc.references | 129. Zhou, Q. 2003. Interaction between heavy metals and nitrogen fertilizers applied to soil-vegetable systems. Bulletin of Environmental Contamination & Toxicology, 71(2). https://doi.org/10.1007/s00128-003-0169-z | pl_PL |
dc.references | 130. Zhou, Y. Q., Li, S. Y., Shi, Y. D., Lv, W., Shen, T. B., Huang, Q. L., Li Y.K. & Wu, Z. L. 2013. Phytoremediation of Chromium and Lead Using Water Lettuce Pistia stratiotes L. Applied Mechanics and Materials, 401, 2071-2075. https://doi.org/10.4028/www.scientific.net/AMM.401-403.2071 | pl_PL |
dc.contributor.authorEmail | e.kiedrzynska@erce.unesco.lodz.pl | pl_PL |
dc.contributor.authorEmail | d.matuszewska@erce.unesco.lodz.pl | pl_PL |
dc.discipline | nauki biologiczne | pl_PL |
dc.discipline | nauki o Ziemi i środowisku | pl_PL |