Pokaż uproszczony rekord

dc.contributor.authorTomanek, Krzysztof
dc.date.accessioned2024-12-03T07:17:58Z
dc.date.available2024-12-03T07:17:58Z
dc.date.issued2024-11-30
dc.identifier.urihttp://hdl.handle.net/11089/53846
dc.description.abstractThe discussion presents the results of a methodological experiment in which three methods – different in their logic and application – of analyzing statements written in text form were used for the same research material. The purpose of this research paper is to indicate the differences of the three analytical approaches, among which we are dealing with analysis based on comprehensible reading of the text (manual coding), semi-automatic and supervised analysis (performed by a classification dictionary programed by a human and based on transparent rules – a method from the field of machine learning – ML), and a non-transparent and unsupervized method (artificial intelligence – in this role Chat GPT version 3.5). The study deals with sentiment analysis. Attention is largely devoted to the application of these methods and to explaining the differences in the obtained results.en
dc.description.abstractArtykuł przedstawia wyniki eksperymentu metodologicznego, w którym w odniesieniu do tego samego materiału badawczego posłużono się trzema odmiennymi w swojej logice i zastosowaniu metodami analizy wypowiedzi zapisanych w formie tekstowej. Celem tego opracowania jest wskazanie różnic trzech podejść analitycznych, w których mamy do czynienia z analizą opartą na rozumiejącym czytaniu tekstu (kodowanie manualne), analizą półautomatyczną i nadzorowaną (wykonaną przez słownik klasyfikacyjny zaprogramowany przez człowieka i oparty na transparentnych regułach – metoda z obszaru machine learning – ML) oraz metodą nietransparentną i nienadzorowaną (sztuczna inteligencja – ChatGPT w wersji 3.5). Badanie dotyczy analizy sentymentu, zwanej też analizą wydźwięku. Uwaga w dużej mierze skoncentrowana jest na zastosowaniu tych metod oraz wyjaśnieniu różnic w uzyskanych wynikach.pl
dc.language.isopl
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesPrzegląd Socjologii Jakościowej;4pl
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectNLPen
dc.subjectMLen
dc.subjectArtificial Intelligenceen
dc.subjectSentiment analysisen
dc.subjectSentiment Dictionaryen
dc.subjectQualitative analysisen
dc.subjectNLPpl
dc.subjectMLpl
dc.subjectsztuczna inteligencjapl
dc.subjectanaliza sentymentupl
dc.subjectsłowniki sentymentupl
dc.subjectanalizy jakościowepl
dc.titleO „subtelnościach” metod oceny wydźwięku wypowiedzi pisanych. Porównanie trzech podejść w analizie sentymentupl
dc.title.alternativeOn the ‘Subtleties’ of the Methods for Evaluating the Sentiment of Written Statements: A Comparison of Three Approaches in Sentiment Analysisen
dc.typeArticle
dc.page.number68-97
dc.contributor.authorAffiliationUniwersytet Jagiellońskipl
dc.identifier.eissn1733-8069
dc.referencesBaccianella Stefano, Esuli Andrea, Sebastiani Fabrizio (2010), SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining, [w:] Proceedings of the International Conference on Language Resources and Evaluation, LREC 2010, 17–23 May 2010, Valletta, Malta, http://nmis.isti.cnr.it/sebastiani/Publications/LREC10.pdf [dostęp: 1.04.2023].pl
dc.referencesBarrett Lisa, Adolphs Ralph, Marsella Stacy, Martinez Aleix, Pollak Seth (2019), Emotional Expressions Reconsidered: Challenges to Inferring Emotion From Human Facial Movements, „Psychological Science in the Public Interest”, vol. 20(1).pl
dc.referencesBernard Russel, Wutich Amber, Ryan Gery (2017), Analyzing Qualitative Data. Systematic Approach, Thousand Oaks: Sage Publications.pl
dc.referencesBryant Anthony, Charmaz Kathy (2007), The SAGE Handbook of Grounded Theory, London: Sage Publications, https://doi.org/10.4135/9781848607941pl
dc.referencesElouazizi Noureddine, Oberg Gunilla, Birol Gulnur (2017), Learning technology-enabled (meta)-cognitive scaffolding to support learning aspects of written argumentation, https://ceur-ws.org/Vol-2141/paper2.pdf [dostęp 17.09.2024].pl
dc.referencesEsuli Andrea, Sebastiani Fabrizio (2006), SentiWordNet: A Publicly Available Lexical Resource for Opinion Mining, https://www.researchgate.net/publication/200044289_SentiWordNet_A_Publicly_Available_Lexical_Resource_for_Opinion_Mining [dostęp: 1.04.2023].pl
dc.referencesFargues Melanie, Kadry Seifedine, Lawal Isah A., Yassine Sahar, Rauf Hafiz Tayyab (2023), Automated Analysis of Open-Ended Students’ Feedback Using Sentiment, Emotion, and Cognition Classifications, „Applied Science”, vol. 13(4), 2061, https://doi.org/10.3390/app13042061pl
dc.referencesFaulkner Sandra, Trotter Stormy (2017), Theoretical Saturation, [w:] The International Encyclopedia of Communication Research Methods, https://doi.org/10.1002/9781118901731.iecrm0250pl
dc.referencesFromm Davida, MacWhinney Brian, Thompson Cynthia (2020), Automation of the Northwestern Narrative Language Analysis System, „Journal of Speech, Language, and Hearing Research”, vol. 63(6), s. 1835–1844.pl
dc.referencesGlaser Barney, Strauss Anselm (1967), The Discovery of Grounded Theory, New Brunswick–London: Aldine Transaction, A Division of Transaction Publishers, http://www.sxf.uevora.pt/wp-content/uploads/2013/03/Glaser_1967.pdf [dostęp: 1.04.2023].pl
dc.referencesGuest Greg, Bunce Arwen, Johnson Laura (2006), How Many Interviews Are Enough? An Experiment with Data Saturation and Variability, „Field Methods”, vol. 18(1), s. 59–82, https://doi.org/10.1177/1525822X05279903pl
dc.referencesHemalatha Indukuri, Varma Gottumukkala Pardha Saradhi, Govardhan Aliseri (2014), Automated Sentiment Analysis System Using Machine Learning Algorithms, „International Journal of Research in Computer and Communication Technology”, vol. 3(3), s. 300–303.pl
dc.referencesHewitt John, Manning Christopher D. (2019), A structural probe for finding syntax in word representations, [w:] Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1, Minneapolis: Association for Computational Linguistics, s. 4129–4138.pl
dc.referencesHsu Chien-Ju, Thompson Cynthia (2018), Manual Versus Automated Narrative Analysis of Agrammatic Production Patterns: The Northwestern Narrative Language Analysis and Computerized Language Analysis, „Journal of Speech, Language, and Hearing Research”, vol. 61(2), s. 373–385.pl
dc.referencesHutto Clayton, Gilbert Eric (2014), VADER: A Parsimonious Rule-Based Model for Sentiment Analysis of Social Media Text, [w:] Eytan Adar, Paul Resnick (red.), Proceedings of the Eighth International AAAI Conference on Weblogs and Social Media, vol. 8(1), Ann Arbor: University of Michigan, PKP Publishing Services Network, s. 216–225, https://doi.org/10.1609/icwsm.v8i1.14550pl
dc.referencesKeiser Gabriele, Presmeg Norma (red.) (2019), Compendium for Early Career Researchers in Mathematics Education, https://link.springer.com/book/10.1007/978-3-030-15636-7 [dostęp: 1.04.2023].pl
dc.referencesKocoń Jan, Janz Arkadiusz, Piasecki Maciej (2018), Context-sensitive sentiment propagation in WordNet, [w:] Proceedings of the 11th International Conference on Language Resources and Evaluation (LREC’18), Singapore: Global Wordnet Association, Nanyang Technological University (NTU), s. 333–338.pl
dc.referencesKocoń Jan, Miłkowski Piotr, Zaśko-Zielińska Monika (2019), Multi-Level Sentiment Analysis of PolEmo 2.0: Extended Corpus of Multi-Domain Consumer Reviews, [w:] Proceedings of the 23rd Conference on Computational Natural Language Learning, Hong Kong: Association for Computational Linguistics, s. 980–991.pl
dc.referencesLake Brenden M., Baroni Marco (2018), Generalization without systematicity: On the compositional skills of sequence-to-sequence recurrent networks, [w:] Proceedings of the 35th International Conference on Machine Learning, Volume 80 of Proceedings of Machine Learning Research (Stockholm), Ithaca: Cornell University Library, s. 2873–2882.pl
dc.referencesLiontou Trisevgeni (2022), Automated Discourse Analysis Techniques and Implications for Writing Assessment, „Languages”, vol. 8(1), 3.pl
dc.referencesLiu Bing (2015), Sentiment analysis: Mining opinions, sentiments, and emotions, Cambridge: MIT Press.pl
dc.referencesLula Paweł, Wójcik Katarzyna, Tuchowski Janusz (2016), Analiza wydźwięku polskojęzycznych opinii konsumenckich ukierunkowanych na cechy produktu, „Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu, Taksonomia 27”, vol. 427, s. 153–164, https://www.dbc.wroc.pl/Content/33161/Lula_Analiza_Wydzwieku_Polskojezycznych_Opinii_Konsumenckich_2016.pdf [dostęp: 10.05.2024].pl
dc.referencesMunnes Stefan, Harsch Corinna, Knobloch Marcel, Vogel Johannes S., Hipp Lena, Schilling Erik (2022), Examining Sentiment in Complex Texts. A Comparison of Different Computational Approaches, „Frontiers in Big Data”, vol. 5, 886362, https://doi.org/10.3389/fdata.2022.886362pl
dc.referencesNémeth Renáta, Koltai Júlia (2021), The Potential of Automated Text Analytics in Social Knowledge Building, [w:] Tamás Rudas, Gábor Péli (red.), Pathways Between Social Science and Computational Social Science, Cham: Springer, s. 49–70.pl
dc.referencesOpenAI (b.r.), Introducing ChatGPT, https://openai.com/blog/chatgpt/ [dostęp: 25.02.2023].pl
dc.referencesOpenAI Platform (b.r.), Prompt examples, https://platform.openai.com/examples [dostęp: 4.04.2023].pl
dc.referencesOracle Polska (b.r.), Czym jest chatbot?, https://www.oracle.com/pl/chatbots/what-is-a-chatbot/ [dostęp: 25.02.2023].pl
dc.referencesRavichander Abhilasha, Hovy Eduard, Suleman Kaheer, Trischler Adam, Cheung Jackie Chi Kit (2020), On the systematicity of probing contextualized word representations: The case of hypernymy in BERT, [w:] Proceedings of the Ninth Joint Conference on Lexical and Computational Semantics, Barcelona: Association for Computational Linguistic, s. 88–102.pl
dc.referencesRegneri Michaela, King Diane (2016), Automated Discourse Analysis of Narrations by Adolescents with Autistic Spectrum Disorder, [w:] Proceedings of the 7th Workshop on Cognitive Aspects of Computational Language Learning, Berlin: Association for Computational Linguistics, s. 1–9.pl
dc.referencesRogers Beth, Knafl Kathleen (2000), Concept analysis: An evolutionary view, [w:] Beth Rogers, Kathleen Knafl (red.), Concept Development in Nursing: Foundations, Techniques and Applications, Philadelphia: W.-B. Saunders Company, s. 77–102.pl
dc.referencesSaunders Benjamin, Sim Julius, Kingstone Tom, Baker Shula, Waterfield Jackie, Bartlam Bernadette, Burroughs Heather, Jinks Clare (2018), Saturation in qualitative research: exploring its conceptualization and operationalization, „Quality & Quantity”, vol. 52, s. 1893–1907, https://doi.org/10.1007/s11135-017-0574-8pl
dc.referencesStrauss Anselm, Corbin Juliet (1998), Basics of qualitative research: Techniques and procedures for developing grounded theory, Thousand Oaks: Sage Publications.pl
dc.referencesTatarkiewicz Władysław (2005), Historia filozofii, Warszawa: Wydawnictwo Naukowe PWN.pl
dc.referencesTomanek Krzysztof (2014a), Analiza sentymentu – metoda analizy danych jakościowych. Przykład zastosowania oraz ewaluacja słownika RID i metody klasyfikacji Bayesa w analizie danych jakościowych, „Przegląd Socjologii Jakościowej”, t. X, nr 2, s. 118–136.pl
dc.referencesTomanek Krzysztof (2014b), Jak nauczyć metodę samodzielności? O „samouczących się” metodach analizy treści, [w:] Jakub Niedbalski (red.), Metody i techniki odkrywania wiedzy. Narzędzia CAQDAS w procesie analizy danych jakościowych, Łódź: Wydawnictwo Uniwersytetu Łódzkiego, s. 173–189.pl
dc.referencesTomanek Krzysztof, Bryda Grzegorz (2014), Odkrywanie wiedzy w wypowiedziach tekstowych. Metoda budowy słownika klasyfikacyjnego, [w:] Jakub Niedbalski (red.), Metody i techniki odkrywania wiedzy. Narzędzia CAQDAS w procesie analizy danych jakościowych, Łódź: Wydawnictwo Uniwersytetu Łódzkiego, s. 219–248.pl
dc.referencesTomanek Krzysztof, Bryda Grzegorz (2015), Odkrywanie postaw dydaktyków zawartych w komentarzach studenckich. Analiza treści z zastosowaniem słownika klasyfikacyjnego, „Przegląd Socjologiczny”, t. LXIV(4), s. 51–81.pl
dc.referencesWilliams Michael, Moser Tami (2019), The Art of Coding and Thematic Exploration in Qualitative Research, „International Management Review”, vol. 15(1), s. 45–55.pl
dc.referencesWyżga Patrycjusz (2023), Dragan o sztucznej inteligencji: Będzie po nas. Nie ma pomyślnego scenariusza, https://wiadomosci.wp.pl/dragan-o-sztucznej-inteligencji-bedzie-po-nas-nie-ma-pomyslnego-scenariusza-6889788022762080a [dostęp: 1.05.2024].pl
dc.referencesYao Jiawei (2019), Automated Sentiment Analysis of Text Data with NLTK, „Journal of Physics: Conference Series”, vol. 1187, 052020.pl
dc.referencesYilmaz Begum (2023), Sentiment Analysis Methods in 2023: Overview, Pros & Cons, https://research.aimultiple.com/sentiment-analysis-methods/ [dostęp: 1.04.2023].pl
dc.contributor.authorEmailkrzysztof.tomanek@uj.edu.pl
dc.identifier.doi10.18778/1733-8069.20.4.04
dc.relation.volume20


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0