dc.contributor.author | Okła, Elżbieta | |
dc.contributor.author | Białecki, Piotr | |
dc.contributor.author | Kędzierska, Marta | |
dc.contributor.author | Pedziwiatr-Werbicka, Elzbieta | |
dc.contributor.author | Takvor, Samuel | |
dc.contributor.author | Gómez, Rafael | |
dc.contributor.author | de la Malta, Francisco Javier | |
dc.contributor.author | Bryszewska, Maria | |
dc.contributor.author | Ionov, Maksim | |
dc.date.accessioned | 2023-05-08T10:42:30Z | |
dc.date.available | 2023-05-08T10:42:30Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Okła Elżbieta, Białecki Piotr, Kędzierska Marta, Pędziwiatr-Werbicka Elżbieta, Miłowska Katarzyna, Takvor Samuel, Gómez Rafael, de la Mata Francisco Javier, Bryszewska Maria, Ionov Maksim: Pegylated Gold Nanoparticles Conjugated with siRNA: Complexes Formation and Cytotoxicity, International Journal of Molecular Sciences, Multidisciplinary Digital Publishing Institute (MDPI), vol. 24, nr 7, 2023, Numer artykułu: 6638, s. 1-13, DOI:10.3390/ijms24076638 | pl_PL |
dc.identifier.issn | 1422-0067 | |
dc.identifier.uri | http://hdl.handle.net/11089/46976 | |
dc.description.abstract | Drug delivery systems such as dendrimers, liposomes, polymers or gold/silver nanoparticles could be used to advance modern medicine. One significant pharmacological problem is crossing
biological barriers by commonly used drugs, e.g., in the treatment of neurodegenerative diseases,
which have a problem of the blood-brain barrier (BBB) restricting drug delivery. Numerous studies
have been conducted to find appropriate drug carriers that are safe, biocompatible and efficient. In
this work, we evaluate pegylated gold nanoparticles AuNP14a and AuNP14b after their conjugation
with therapeutic siRNA directed against APOE4. This genetic risk factor remains the strongest
predictor for late-onset Alzheimer’s disease. The study aimed to assess the biophysical properties
of AuNPs/siAPOE complexes and to check their biological safety on healthy cells using human
brain endothelial cells (HBEC-5i). Techniques such as fluorescence polarization, circular dichroism,
dynamic light scattering, ζ-potential measurements and gel retardation assay showed that AuNPs
form stable complexes with siRNA. Subsequently, cytotoxicity assays proved the biological safety
of formed conjugates. Obtained results enabled us to find effective concentrations of AuNPs when
complexes are formed and non-toxic for healthy cells. One of the studied nanoparticles, AuNP14b
complexed with siRNA, displayed lower cytotoxicity (MTT assay, cells viability −74.8 ± 3.1%) than
free nanoparticles (44.7 ± 3.6%). This may be promising for further investigations in nucleic acid
delivery and could have practical use in treating neurodegenerative diseases. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | MDPI | pl_PL |
dc.relation.ispartofseries | International Journal of Molecular Sciences;24, 6638 | |
dc.rights | Uznanie autorstwa 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | gold nanoparticles | pl_PL |
dc.subject | siRNA | pl_PL |
dc.subject | complex formation | pl_PL |
dc.subject | biophysical interaction | pl_PL |
dc.subject | cytotoxicity | pl_PL |
dc.title | Pegylated Gold Nanoparticles Conjugated with siRNA: Complexes Formation and Cytotoxicity | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 1-13 | pl_PL |
dc.contributor.authorAffiliation | Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Organic and Inorganic Chemistry, Research Chemistry Institute “Andrés M. del Río” (IQAR), University of Alcalá, 28871 Alcalá de Henares, Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; Institute “Ramón y Cajal” for Health Research (IRYCIS), 28034 Madrid, Spain | pl_PL |
dc.contributor.authorAffiliation | Department of Organic and Inorganic Chemistry, Research Chemistry Institute “Andrés M. del Río” (IQAR), University of Alcalá, 28871 Alcalá de Henares, Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; Institute “Ramón y Cajal” for Health Research (IRYCIS), 28034 Madrid, Spain | pl_PL |
dc.contributor.authorAffiliation | Department of Organic and Inorganic Chemistry, Research Chemistry Institute “Andrés M. del Río” (IQAR), University of Alcalá, 28871 Alcalá de Henares, Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; Institute “Ramón y Cajal” for Health Research (IRYCIS), 28034 Madrid, Spain | pl_PL |
dc.contributor.authorAffiliation | Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland | pl_PL |
dc.references | Razavi, R.; Amiri, M.; Alshamsi, H.; Eslaminejad, T.; Salavati-Niasari, M. Green synthesis of Ag nanoparticles in oil-in-water nano-emulsion and evaluation of their antibacterial and cytotoxic properties as well as molecular docking. Arab. J. Chem. 2021, 14, 103323. | pl_PL |
dc.references | Biswas, P.; Polash, S.A.; Dey, D.; Kaium, M.A.; Mahmud, A.R.; Yasmin, F.; Baral, S.K.; Islam, M.A.; Rahaman, T.I.; Abdullah, A.; et al. Advanced implications of nanotechnology in disease control and environmental perspectives. Biomed. Pharmacother. 2023, 158, 114172. | pl_PL |
dc.references | Patra, J.K.; Das, G.; Fraceto, L.F.; Ramos Campos, E.V.; del Pilar Rodriguez-Torres, M.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. | pl_PL |
dc.references | Lu, H.; Wang, J.; Wang, T.; Zhong, J.; Bao, Y.; Hao, H. Recent Progress on Nanostructures for Drug Delivery Applications. J. Nanomater. 2016, 2016, 5762431. | pl_PL |
dc.references | Amina, S.J.; Guo, B. A Review on the Synthesis and Functionalization of Gold Nanoparticles as a Drug Delivery Vehicle. Int. J. Nanomed. 2020, 15, 9823–9857. | pl_PL |
dc.references | Balfourier, A.; Luciani, N.; Wang, G.; Lelong, G.; Ersen, O.; Khelfa, A.; Alloyeau, D.; Gazeau, F.; Carn, F. Unexpected intracellular biodegradation and recrystallization of gold nanoparticles. Proc. Natl. Acad. Sci. USA 2020, 117, 103–113. | pl_PL |
dc.references | Kang, H.; Buchman, J.; Rodriguez, R.; Ring, H.; He, J.; Bantz, K.; Haynes, C. Stabilization of Silver and Gold Nanoparticles: Preservation and Improvement of Plasmonic Functionalities. Chem. Rev. 2019, 119, 664–699. | pl_PL |
dc.references | Huang, J.; Xiao, K. Nanoparticles-Based Strategies to Improve the Delivery of Therapeutic Small Interfering RNA in Precision Oncology. Pharmaceutics 2022, 14, 1586. | pl_PL |
dc.references | Fang, Y.; Xue, J.; Gao, S.; Lu, A.; Yang, D.; Jiang, H.; He, Y.; Shi, K. Cleavable PEGylation: A strategy for overcoming the ‘PEG dilemma’ in efficient drug delivery. Drug Deliv. 2017, 24, 22–32. | pl_PL |
dc.references | Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51. | pl_PL |
dc.references | Jain, S.; Hirst, D.G.; O’Sullivan, J.M. Gold nanoparticles as novel agents for cancer therapy. Br. J. Radiol. 2012, 85, 101–113. | pl_PL |
dc.references | [CrossRef] [PubMed] 12. Grodzicka, M.; Pena-Gonzalez, C.; Ortega, P.; Michlewska, S.; Lozano, R.; Bryszewska, M.; de la Mata, F.; Ionov, M. Heterofunctionalized polyphenolic dendrimers decorated with caffeic acid: Synthesis, characterization and antioxidant activity. Sustain. Mater. Technol. 2022, 33, e00497. | pl_PL |
dc.references | Cone, R.A. Barrier properties of mucus. Adv. Drug Deliv. Rev. 2009, 61, 75–85. | pl_PL |
dc.references | Suk, J.S.; Lai, S.K.; Wang, Y.-Y.; Ensign, L.M.; Zeitlin, P.L.; Boyle, M.P.; Hanes, J. The penetration of fresh undiluted sputum expectorated by cystic fibrosis patients by non-adhesive polymer nanoparticles. Biomaterials 2009, 30, 2591–2597. | pl_PL |
dc.references | Nance, E.A.; Woodworth, G.F.; Sailor, K.A.; Shih, T.-Y.; Qu, X.; Swaminathan, G.; Xiang, D.; Eberhart, C.; Hanes, J. A Dense Poly(ethylene glycol) Coating Improves Penetration of Large Polymeric Nanoparticles within Brain Tissue. Sci. Transl. Med. 2012, 4, 149ra119. | pl_PL |
dc.references | Yamazaki, Y.; Zhao, N.; Caulfield, T.R.; Liu, C.C.; Bu, G. Apolipoprotein E and Alzheimer disease: Pathobiology and targeting strategies. Nat. Rev. Neurol. 2019, 15, 501–518. | pl_PL |
dc.references | Hu, B.; Zhong, L.; Weng, Y.; Peng, L.; Huang, Y.; Zhao, Y.; Liang, X.-J. Therapeutic siRNA: State of the art. Signal Transduct. Target Ther. 2020, 5, 101. | pl_PL |
dc.references | Ther. 2020, 5, 101. [CrossRef] [PubMed] 18. Ihnatsyeu-Kachan, A.; Dzmitruk, V.; Apartsin, E.; Krasheninina, O.; Ionov, M.; Loznikova, S.; Venyaminova, A.; Miłowska, K.; Shcharbin, D.; Mignani, S.; et al. Multi-Target Inhibition of Cancer Cell Growth by SiRNA Cocktails and 5-Fluorouracil Using Effective Piperidine-Terminated Phosphorus Dendrimers. Colloids Interfaces 2017, 1, 6. | pl_PL |
dc.references | Sioud, M.; Furset, G.; Cekaite, L. Suppression of immunostimulatory siRNA-driven innate immune activation by 20 -modified RNAs. Biochem. Biophys. Res. Commun. 2007, 361, 122–126. | pl_PL |
dc.references | Shaabani, E.; Sharifiaghdam, M.; Lammens, J.; De Keersmaecker, H.; Vervaet, C.; De Beer, T.; Motevasali, E.; Ghahremani, M.H.; Mansouri, P.; De Smedt, S.; et al. Increasing angiogenesis factors in hypoxic diabetic wound conditions by siRNA delivery: Additive effect of LbL-gold nanocarriers and desloratadine-induced lysosomal escape. Int. J. Mol. Sci. 2021, 22, 9216. | pl_PL |
dc.references | Barrios-Gumiel, A.; Sánchez-Nieves, J.; Pedziwiatr-Werbicka, E.; Abashkin, V.; Shcharbina, N.; Shcharbin, D.; Gli ´nska, S.; Ciepluch, K.; Kuc-Ciepluch, D.; Lach, D.; et al. Effect of PEGylation on the biological properties of cationic carbosilane dendronized gold nanoparticles. Int. J. Pharm. 2020, 573, 118867. | pl_PL |
dc.references | Pe¸dziwiatr-Werbicka, E.; Gorzkiewicz, M.; Horodecka, K.; Lach, D.; Barrios-Gumiel, A.; Sánchez-Nieves, J.; Gómez, R.; De La Mata, F.; Bryszewska, M. PEGylation of Dendronized Gold Nanoparticles Affects Their Interaction with Thrombin and siRNA. J. Phys. Chem. B 2021, 125, 1196–1206. | pl_PL |
dc.references | Pedziwiatr-Werbicka, E.; Gorzkiewicz, M.; Michlewska, S.; Ionov, M.; Shcharabin, D.; Klajnert-Maculewicz, B.; Pena-Gonzales, C.E.; Sanchez-Nieves, J.; Gomez, R.; Bryszewska, M. Evaluation of dendronized gold nanoparticles as siRNAs carriers into cancer cells. J. Molec. Liquids 2021, 324, 114726. | pl_PL |
dc.references | Miteva, M.; Kirkbride, K.C.; Kilchrist, K.V.; Werfel, T.A.; Li, H.; Nelson, C.E.; Gupta, M.K.; Giorgio, T.D.; Duvall, C.L. Tuning PEGylation of mixed micelles to overcome intracellular and systemic siRNA delivery barriers. Biomaterials 2015, 38, 97–107. | pl_PL |
dc.references | Fröhlich, E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomed. 2012, 7, 5577–5591. | pl_PL |
dc.references | Michlewska, S.; Ionov, M.; Maroto-Díaz, M.; Szwed, A.; Ihnatsyeu-Kachan, A.; Loznikova, S.; Shcharbin, D.; Maly, M.; Ramirez, R.; De La Mata, F.; et al. Ruthenium dendrimers as carriers for anticancer siRNA. J. Inorg. Biochem. 2018, 181, 18–27. | pl_PL |
dc.references | Del Olmo, N.; Holota, M.; Michlewska, S.; Gómez, R.; Ortega, P.; Ionov, M.; De La Mata, F.; Bryszewska, M. Copper (II) Metallodendrimers Combined with Pro-Apoptotic siRNAs as a Promising Strategy Against Breast Cancer Cells. Pharmaceutics 2020, 12, 727. | pl_PL |
dc.references | Troiber, C.; Kasper, J.; Milani, S.; Scheible, M.; Martin, I.; Schaubhut, F.; Küchler, S.; Rädler, J.; Simmel, F.; Friess, W.; et al. Comparison of four different particle sizing methods for siRNA polyplex characterization. Eur. J. Pharm. Biopharm. 2013, 84, 255–264. | pl_PL |
dc.references | Danaei, M.; Dehghankhold, M.; Ataei, S.; Davarani, F.H.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. | pl_PL |
dc.references | Gorzkiewicz, M.; Kope´c, O.; Janaszewska, A.; Konopka, M.; P ˛edziwiatr-Werbicka, E.; Tarasenko, I.; Bezrodnyi, V.; Neelov, I.; Klajnert-Maculewicz, B. Poly(Lysine) dendrimers form complexes with sirna and provide its effcient uptake by myeloid cells: Model studies for therapeutic nucleic acid delivery. Int. J. Mol. Sci. 2020, 21, 3138. | pl_PL |
dc.references | Hendrickson, O.; Taranova, N.; Zherdev, A.; Dzantiev, B.; Eremin, S. Fluorescence Polarization-Based Bioassays: New Horizons. Sensors 2020, 20, 7132. | pl_PL |
dc.references | Andrzejewska, W.; Wilkowska, M.; Skrzypczak, A.; Kozak, M. Ammonium Gemini Surfactants Form Complexes with Model Oligomers of siRNA and dsDNA. Int. J. Mol. Sci. 2019, 20, 5546. | pl_PL |
dc.references | Techaarpornkul, S.; Wongkupasert, S.; Opanasopit, P.; Apirakaramwong, A.; Nunthanid, J.; Ruktanonchai, U. Chitosan-Mediated siRNA Delivery In Vitro: Effect of Polymer Molecular Weight, Concentration and Salt Forms. AAPS PharmSciTech 2010, 11, 64–72. | pl_PL |
dc.references | Siligardi, G.; Hussain, R. Applications of Circular Dichroism. In Encyclopedia of Spectroscopy and Spectrometry, 2nd ed.; Lindon, J.C., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2010; pp. 9–14. ISBN 978-0-12-374413-5. | pl_PL |
dc.references | Büyükköro ˘glu, G.; Dora, D.D.; Özdemir, F.; Hizel, C. Techniques for protein analysis. In Omics Technologies and Bio-engineering: Towards Improving Quality of Life; Barh, D., Azevedo, V., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; Volume 1, pp. 317–351. ISBN 978-0-12-804659-3. | pl_PL |
dc.references | Law, M.; Jafari, M.; Chen, P. Physicochemical Characterization of SiRNA-peptide Complexes. Biotechnol. Progress 2008, 24, 957–963. | pl_PL |
dc.references | Alagarsamy, J.; Jaeschke, A.; Hui, D.Y. Apolipoprotein E in Cardiometabolic and Neurological Health and Diseases. Int. J. Mol. Sci. 2022, 23, 9892. | pl_PL |
dc.references | Fellows, M.D.; O’Donovan, M.R. Cytotoxicity in cultured mammalian cells is a function of the method used to estimate it. Mutagenesis 2007, 22, 275–280. | pl_PL |
dc.references | Swartzwelter, B.; Michelini, S.; Frauenlob, T.; Barbero, F.; Verde, A.; De Luca, A.; Puntes, V.; Duschl, A.; Horejs-Hoeck, J.; Italiani, P.; et al. Innate Memory Reprogramming by Gold Nanoparticles Depends on the Microbial Agents That Induce Memory. Front. Immunol. 2021, 12, 4582. | pl_PL |
dc.references | Shaabani, E.; Sharifiaghdam, M.; De Keersmaecker, H.; De Rycke, R.; De Smedt, S.; Faridi-Majidi, R.; Braeckmans, K.; Fraire, J. Layer by Layer Assembled Chitosan-Coated Gold Nanoparticles for Enhanced siRNA Delivery and Silencing. Int. J. Mol. Sci. 2021, 22, 831. | pl_PL |
dc.references | Xue, C.; Hu, S.; Gao, Z.; Wang, L.; Luo, M.; Yu, X.; Li, B.; Shen, Z.; Wu, Z. Programmably tiling rigidified DNA brick on gold nanoparticle as multi-functional shell for cancer-targeted delivery of siRNAs. Nat. Commun. 2021, 12, 2928. | pl_PL |
dc.references | Yang, Y.; Han, Y.; Sun, Q.; Cheng, J.; Yue, C.; Liu, Y.; Song, J.; Jin, W.; Ding, X.; de la Fuente, J.; et al. Au-siRNA aptamer nanocages as a high-efficiency drug and gene delivery system for targeted lung cancer therapy. J. Nanobiotechnol. 2021, 19, 54. | pl_PL |
dc.references | Ionov, M.; Lazniewska, J.; Dzmitruk, V.; Halets, I.; Loznikova, S.; Novopashina, D.; Apartsin, E.; Krasheninina, O.; Venyaminova, A.; Milowska, K.; et al. Anticancer siRNA cocktails as a novel tool to treat cancer cells. Part (A). Mechanisms of interaction. Int. J. Pharm. 2015, 485, 261–269. | pl_PL |
dc.contributor.authorEmail | maksim.ionov@biol.uni.lodz.pl | pl_PL |
dc.identifier.doi | 10.3390/ijms24076638 | |
dc.discipline | nauki biologiczne | pl_PL |