Show simple item record

dc.contributor.authorOkła, Elżbieta
dc.contributor.authorBiałecki, Piotr
dc.contributor.authorKędzierska, Marta
dc.contributor.authorPedziwiatr-Werbicka, Elzbieta
dc.contributor.authorTakvor, Samuel
dc.contributor.authorGómez, Rafael
dc.contributor.authorde la Malta, Francisco Javier
dc.contributor.authorBryszewska, Maria
dc.contributor.authorIonov, Maksim
dc.date.accessioned2023-05-08T10:42:30Z
dc.date.available2023-05-08T10:42:30Z
dc.date.issued2023
dc.identifier.citationOkła Elżbieta, Białecki Piotr, Kędzierska Marta, Pędziwiatr-Werbicka Elżbieta, Miłowska Katarzyna, Takvor Samuel, Gómez Rafael, de la Mata Francisco Javier, Bryszewska Maria, Ionov Maksim: Pegylated Gold Nanoparticles Conjugated with siRNA: Complexes Formation and Cytotoxicity, International Journal of Molecular Sciences, Multidisciplinary Digital Publishing Institute (MDPI), vol. 24, nr 7, 2023, Numer artykułu: 6638, s. 1-13, DOI:10.3390/ijms24076638pl_PL
dc.identifier.issn1422-0067
dc.identifier.urihttp://hdl.handle.net/11089/46976
dc.description.abstractDrug delivery systems such as dendrimers, liposomes, polymers or gold/silver nanoparticles could be used to advance modern medicine. One significant pharmacological problem is crossing biological barriers by commonly used drugs, e.g., in the treatment of neurodegenerative diseases, which have a problem of the blood-brain barrier (BBB) restricting drug delivery. Numerous studies have been conducted to find appropriate drug carriers that are safe, biocompatible and efficient. In this work, we evaluate pegylated gold nanoparticles AuNP14a and AuNP14b after their conjugation with therapeutic siRNA directed against APOE4. This genetic risk factor remains the strongest predictor for late-onset Alzheimer’s disease. The study aimed to assess the biophysical properties of AuNPs/siAPOE complexes and to check their biological safety on healthy cells using human brain endothelial cells (HBEC-5i). Techniques such as fluorescence polarization, circular dichroism, dynamic light scattering, ζ-potential measurements and gel retardation assay showed that AuNPs form stable complexes with siRNA. Subsequently, cytotoxicity assays proved the biological safety of formed conjugates. Obtained results enabled us to find effective concentrations of AuNPs when complexes are formed and non-toxic for healthy cells. One of the studied nanoparticles, AuNP14b complexed with siRNA, displayed lower cytotoxicity (MTT assay, cells viability −74.8 ± 3.1%) than free nanoparticles (44.7 ± 3.6%). This may be promising for further investigations in nucleic acid delivery and could have practical use in treating neurodegenerative diseases.pl_PL
dc.language.isoenpl_PL
dc.publisherMDPIpl_PL
dc.relation.ispartofseriesInternational Journal of Molecular Sciences;24, 6638
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectgold nanoparticlespl_PL
dc.subjectsiRNApl_PL
dc.subjectcomplex formationpl_PL
dc.subjectbiophysical interactionpl_PL
dc.subjectcytotoxicitypl_PL
dc.titlePegylated Gold Nanoparticles Conjugated with siRNA: Complexes Formation and Cytotoxicitypl_PL
dc.typeArticlepl_PL
dc.page.number1-13pl_PL
dc.contributor.authorAffiliationDepartment of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Organic and Inorganic Chemistry, Research Chemistry Institute “Andrés M. del Río” (IQAR), University of Alcalá, 28871 Alcalá de Henares, Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; Institute “Ramón y Cajal” for Health Research (IRYCIS), 28034 Madrid, Spainpl_PL
dc.contributor.authorAffiliationDepartment of Organic and Inorganic Chemistry, Research Chemistry Institute “Andrés M. del Río” (IQAR), University of Alcalá, 28871 Alcalá de Henares, Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; Institute “Ramón y Cajal” for Health Research (IRYCIS), 28034 Madrid, Spainpl_PL
dc.contributor.authorAffiliationDepartment of Organic and Inorganic Chemistry, Research Chemistry Institute “Andrés M. del Río” (IQAR), University of Alcalá, 28871 Alcalá de Henares, Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; Institute “Ramón y Cajal” for Health Research (IRYCIS), 28034 Madrid, Spainpl_PL
dc.contributor.authorAffiliationDepartment of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Polandpl_PL
dc.referencesRazavi, R.; Amiri, M.; Alshamsi, H.; Eslaminejad, T.; Salavati-Niasari, M. Green synthesis of Ag nanoparticles in oil-in-water nano-emulsion and evaluation of their antibacterial and cytotoxic properties as well as molecular docking. Arab. J. Chem. 2021, 14, 103323.pl_PL
dc.referencesBiswas, P.; Polash, S.A.; Dey, D.; Kaium, M.A.; Mahmud, A.R.; Yasmin, F.; Baral, S.K.; Islam, M.A.; Rahaman, T.I.; Abdullah, A.; et al. Advanced implications of nanotechnology in disease control and environmental perspectives. Biomed. Pharmacother. 2023, 158, 114172.pl_PL
dc.referencesPatra, J.K.; Das, G.; Fraceto, L.F.; Ramos Campos, E.V.; del Pilar Rodriguez-Torres, M.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71.pl_PL
dc.referencesLu, H.; Wang, J.; Wang, T.; Zhong, J.; Bao, Y.; Hao, H. Recent Progress on Nanostructures for Drug Delivery Applications. J. Nanomater. 2016, 2016, 5762431.pl_PL
dc.referencesAmina, S.J.; Guo, B. A Review on the Synthesis and Functionalization of Gold Nanoparticles as a Drug Delivery Vehicle. Int. J. Nanomed. 2020, 15, 9823–9857.pl_PL
dc.referencesBalfourier, A.; Luciani, N.; Wang, G.; Lelong, G.; Ersen, O.; Khelfa, A.; Alloyeau, D.; Gazeau, F.; Carn, F. Unexpected intracellular biodegradation and recrystallization of gold nanoparticles. Proc. Natl. Acad. Sci. USA 2020, 117, 103–113.pl_PL
dc.referencesKang, H.; Buchman, J.; Rodriguez, R.; Ring, H.; He, J.; Bantz, K.; Haynes, C. Stabilization of Silver and Gold Nanoparticles: Preservation and Improvement of Plasmonic Functionalities. Chem. Rev. 2019, 119, 664–699.pl_PL
dc.referencesHuang, J.; Xiao, K. Nanoparticles-Based Strategies to Improve the Delivery of Therapeutic Small Interfering RNA in Precision Oncology. Pharmaceutics 2022, 14, 1586.pl_PL
dc.referencesFang, Y.; Xue, J.; Gao, S.; Lu, A.; Yang, D.; Jiang, H.; He, Y.; Shi, K. Cleavable PEGylation: A strategy for overcoming the ‘PEG dilemma’ in efficient drug delivery. Drug Deliv. 2017, 24, 22–32.pl_PL
dc.referencesSuk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51.pl_PL
dc.referencesJain, S.; Hirst, D.G.; O’Sullivan, J.M. Gold nanoparticles as novel agents for cancer therapy. Br. J. Radiol. 2012, 85, 101–113.pl_PL
dc.references[CrossRef] [PubMed] 12. Grodzicka, M.; Pena-Gonzalez, C.; Ortega, P.; Michlewska, S.; Lozano, R.; Bryszewska, M.; de la Mata, F.; Ionov, M. Heterofunctionalized polyphenolic dendrimers decorated with caffeic acid: Synthesis, characterization and antioxidant activity. Sustain. Mater. Technol. 2022, 33, e00497.pl_PL
dc.referencesCone, R.A. Barrier properties of mucus. Adv. Drug Deliv. Rev. 2009, 61, 75–85.pl_PL
dc.referencesSuk, J.S.; Lai, S.K.; Wang, Y.-Y.; Ensign, L.M.; Zeitlin, P.L.; Boyle, M.P.; Hanes, J. The penetration of fresh undiluted sputum expectorated by cystic fibrosis patients by non-adhesive polymer nanoparticles. Biomaterials 2009, 30, 2591–2597.pl_PL
dc.referencesNance, E.A.; Woodworth, G.F.; Sailor, K.A.; Shih, T.-Y.; Qu, X.; Swaminathan, G.; Xiang, D.; Eberhart, C.; Hanes, J. A Dense Poly(ethylene glycol) Coating Improves Penetration of Large Polymeric Nanoparticles within Brain Tissue. Sci. Transl. Med. 2012, 4, 149ra119.pl_PL
dc.referencesYamazaki, Y.; Zhao, N.; Caulfield, T.R.; Liu, C.C.; Bu, G. Apolipoprotein E and Alzheimer disease: Pathobiology and targeting strategies. Nat. Rev. Neurol. 2019, 15, 501–518.pl_PL
dc.referencesHu, B.; Zhong, L.; Weng, Y.; Peng, L.; Huang, Y.; Zhao, Y.; Liang, X.-J. Therapeutic siRNA: State of the art. Signal Transduct. Target Ther. 2020, 5, 101.pl_PL
dc.referencesTher. 2020, 5, 101. [CrossRef] [PubMed] 18. Ihnatsyeu-Kachan, A.; Dzmitruk, V.; Apartsin, E.; Krasheninina, O.; Ionov, M.; Loznikova, S.; Venyaminova, A.; Miłowska, K.; Shcharbin, D.; Mignani, S.; et al. Multi-Target Inhibition of Cancer Cell Growth by SiRNA Cocktails and 5-Fluorouracil Using Effective Piperidine-Terminated Phosphorus Dendrimers. Colloids Interfaces 2017, 1, 6.pl_PL
dc.referencesSioud, M.; Furset, G.; Cekaite, L. Suppression of immunostimulatory siRNA-driven innate immune activation by 20 -modified RNAs. Biochem. Biophys. Res. Commun. 2007, 361, 122–126.pl_PL
dc.referencesShaabani, E.; Sharifiaghdam, M.; Lammens, J.; De Keersmaecker, H.; Vervaet, C.; De Beer, T.; Motevasali, E.; Ghahremani, M.H.; Mansouri, P.; De Smedt, S.; et al. Increasing angiogenesis factors in hypoxic diabetic wound conditions by siRNA delivery: Additive effect of LbL-gold nanocarriers and desloratadine-induced lysosomal escape. Int. J. Mol. Sci. 2021, 22, 9216.pl_PL
dc.referencesBarrios-Gumiel, A.; Sánchez-Nieves, J.; Pedziwiatr-Werbicka, E.; Abashkin, V.; Shcharbina, N.; Shcharbin, D.; Gli ´nska, S.; Ciepluch, K.; Kuc-Ciepluch, D.; Lach, D.; et al. Effect of PEGylation on the biological properties of cationic carbosilane dendronized gold nanoparticles. Int. J. Pharm. 2020, 573, 118867.pl_PL
dc.referencesPe¸dziwiatr-Werbicka, E.; Gorzkiewicz, M.; Horodecka, K.; Lach, D.; Barrios-Gumiel, A.; Sánchez-Nieves, J.; Gómez, R.; De La Mata, F.; Bryszewska, M. PEGylation of Dendronized Gold Nanoparticles Affects Their Interaction with Thrombin and siRNA. J. Phys. Chem. B 2021, 125, 1196–1206.pl_PL
dc.referencesPedziwiatr-Werbicka, E.; Gorzkiewicz, M.; Michlewska, S.; Ionov, M.; Shcharabin, D.; Klajnert-Maculewicz, B.; Pena-Gonzales, C.E.; Sanchez-Nieves, J.; Gomez, R.; Bryszewska, M. Evaluation of dendronized gold nanoparticles as siRNAs carriers into cancer cells. J. Molec. Liquids 2021, 324, 114726.pl_PL
dc.referencesMiteva, M.; Kirkbride, K.C.; Kilchrist, K.V.; Werfel, T.A.; Li, H.; Nelson, C.E.; Gupta, M.K.; Giorgio, T.D.; Duvall, C.L. Tuning PEGylation of mixed micelles to overcome intracellular and systemic siRNA delivery barriers. Biomaterials 2015, 38, 97–107.pl_PL
dc.referencesFröhlich, E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomed. 2012, 7, 5577–5591.pl_PL
dc.referencesMichlewska, S.; Ionov, M.; Maroto-Díaz, M.; Szwed, A.; Ihnatsyeu-Kachan, A.; Loznikova, S.; Shcharbin, D.; Maly, M.; Ramirez, R.; De La Mata, F.; et al. Ruthenium dendrimers as carriers for anticancer siRNA. J. Inorg. Biochem. 2018, 181, 18–27.pl_PL
dc.referencesDel Olmo, N.; Holota, M.; Michlewska, S.; Gómez, R.; Ortega, P.; Ionov, M.; De La Mata, F.; Bryszewska, M. Copper (II) Metallodendrimers Combined with Pro-Apoptotic siRNAs as a Promising Strategy Against Breast Cancer Cells. Pharmaceutics 2020, 12, 727.pl_PL
dc.referencesTroiber, C.; Kasper, J.; Milani, S.; Scheible, M.; Martin, I.; Schaubhut, F.; Küchler, S.; Rädler, J.; Simmel, F.; Friess, W.; et al. Comparison of four different particle sizing methods for siRNA polyplex characterization. Eur. J. Pharm. Biopharm. 2013, 84, 255–264.pl_PL
dc.referencesDanaei, M.; Dehghankhold, M.; Ataei, S.; Davarani, F.H.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57.pl_PL
dc.referencesGorzkiewicz, M.; Kope´c, O.; Janaszewska, A.; Konopka, M.; P ˛edziwiatr-Werbicka, E.; Tarasenko, I.; Bezrodnyi, V.; Neelov, I.; Klajnert-Maculewicz, B. Poly(Lysine) dendrimers form complexes with sirna and provide its effcient uptake by myeloid cells: Model studies for therapeutic nucleic acid delivery. Int. J. Mol. Sci. 2020, 21, 3138.pl_PL
dc.referencesHendrickson, O.; Taranova, N.; Zherdev, A.; Dzantiev, B.; Eremin, S. Fluorescence Polarization-Based Bioassays: New Horizons. Sensors 2020, 20, 7132.pl_PL
dc.referencesAndrzejewska, W.; Wilkowska, M.; Skrzypczak, A.; Kozak, M. Ammonium Gemini Surfactants Form Complexes with Model Oligomers of siRNA and dsDNA. Int. J. Mol. Sci. 2019, 20, 5546.pl_PL
dc.referencesTechaarpornkul, S.; Wongkupasert, S.; Opanasopit, P.; Apirakaramwong, A.; Nunthanid, J.; Ruktanonchai, U. Chitosan-Mediated siRNA Delivery In Vitro: Effect of Polymer Molecular Weight, Concentration and Salt Forms. AAPS PharmSciTech 2010, 11, 64–72.pl_PL
dc.referencesSiligardi, G.; Hussain, R. Applications of Circular Dichroism. In Encyclopedia of Spectroscopy and Spectrometry, 2nd ed.; Lindon, J.C., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2010; pp. 9–14. ISBN 978-0-12-374413-5.pl_PL
dc.referencesBüyükköro ˘glu, G.; Dora, D.D.; Özdemir, F.; Hizel, C. Techniques for protein analysis. In Omics Technologies and Bio-engineering: Towards Improving Quality of Life; Barh, D., Azevedo, V., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; Volume 1, pp. 317–351. ISBN 978-0-12-804659-3.pl_PL
dc.referencesLaw, M.; Jafari, M.; Chen, P. Physicochemical Characterization of SiRNA-peptide Complexes. Biotechnol. Progress 2008, 24, 957–963.pl_PL
dc.referencesAlagarsamy, J.; Jaeschke, A.; Hui, D.Y. Apolipoprotein E in Cardiometabolic and Neurological Health and Diseases. Int. J. Mol. Sci. 2022, 23, 9892.pl_PL
dc.referencesFellows, M.D.; O’Donovan, M.R. Cytotoxicity in cultured mammalian cells is a function of the method used to estimate it. Mutagenesis 2007, 22, 275–280.pl_PL
dc.referencesSwartzwelter, B.; Michelini, S.; Frauenlob, T.; Barbero, F.; Verde, A.; De Luca, A.; Puntes, V.; Duschl, A.; Horejs-Hoeck, J.; Italiani, P.; et al. Innate Memory Reprogramming by Gold Nanoparticles Depends on the Microbial Agents That Induce Memory. Front. Immunol. 2021, 12, 4582.pl_PL
dc.referencesShaabani, E.; Sharifiaghdam, M.; De Keersmaecker, H.; De Rycke, R.; De Smedt, S.; Faridi-Majidi, R.; Braeckmans, K.; Fraire, J. Layer by Layer Assembled Chitosan-Coated Gold Nanoparticles for Enhanced siRNA Delivery and Silencing. Int. J. Mol. Sci. 2021, 22, 831.pl_PL
dc.referencesXue, C.; Hu, S.; Gao, Z.; Wang, L.; Luo, M.; Yu, X.; Li, B.; Shen, Z.; Wu, Z. Programmably tiling rigidified DNA brick on gold nanoparticle as multi-functional shell for cancer-targeted delivery of siRNAs. Nat. Commun. 2021, 12, 2928.pl_PL
dc.referencesYang, Y.; Han, Y.; Sun, Q.; Cheng, J.; Yue, C.; Liu, Y.; Song, J.; Jin, W.; Ding, X.; de la Fuente, J.; et al. Au-siRNA aptamer nanocages as a high-efficiency drug and gene delivery system for targeted lung cancer therapy. J. Nanobiotechnol. 2021, 19, 54.pl_PL
dc.referencesIonov, M.; Lazniewska, J.; Dzmitruk, V.; Halets, I.; Loznikova, S.; Novopashina, D.; Apartsin, E.; Krasheninina, O.; Venyaminova, A.; Milowska, K.; et al. Anticancer siRNA cocktails as a novel tool to treat cancer cells. Part (A). Mechanisms of interaction. Int. J. Pharm. 2015, 485, 261–269.pl_PL
dc.contributor.authorEmailmaksim.ionov@biol.uni.lodz.plpl_PL
dc.identifier.doi10.3390/ijms24076638
dc.disciplinenauki biologicznepl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Uznanie autorstwa 4.0 Międzynarodowe