Show simple item record

dc.contributor.authorPawelec, Łukasz
dc.contributor.authorKierczak, Karolina
dc.contributor.authorLipowicz, Anna
dc.date.accessioned2023-02-13T06:26:22Z
dc.date.available2023-02-13T06:26:22Z
dc.date.issued2023-01-03
dc.identifier.issn1898-6773
dc.identifier.urihttp://hdl.handle.net/11089/45900
dc.description.abstractHuman voice is an extremely important biological signal which contains information about sex, age, emotional state, health and physical features of a speaker. Estimating a physical appearance from a vocal cue can be an important asset for sciences including forensics and dietetics. Although there have been several studies focused on the relationships between vocal parameters and ratings of height, weight, age and musculature of a speaker, to our knowledge, there has not been a study examining the assessment of one’s BMI based on voice alone.The purpose of the current study was to determine the ability of female “Judges” to evaluate speakers’ (men and women) obesity and body fat distribution from their vocal cues. It has also been checked which voice parameters are key vocal cues in this assessment.The study material consisted of 12 adult speakers’ (6 women) voice recordings assessed by 87 “Judges” based on a 5-point graphic scale presenting body fat level and distribution (separately for men and women). For each speaker body height, weight, BMI, Visceral Fat Level (VFL, InBody 270) and acoustic parameters were measured. In addition, the accuracy of BMI category was verified. This study also aimed to determine which vocal parameters were cues for the assessment for men and women. To achieve it, two independent experiments were conducted: I: “Judges” had to choose one (obese) speaker from 3 voices (in 4 series); II: they were asked to rate body fat level of the same 12 speakers based on 5-point graphic scale.Obese speakers (i.e., BMI above 30) were selected correctly with the accuracy greater than predicted by chance (experiment I). By using a graphic scale, our study found that speakers exhibiting higher BMI were rated as fatter (experiment II). For male speakers the most important vocal predictors of the BMI were harmonics-to-noise ratio (HNR) and formant dispersion (Df); for women: formant spacing (Pf) and intensity (loudness).Human voice contains information about one’s increased BMI level which are hidden in some vocal cues.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesAnthropological Review;4en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectbody compositionen
dc.subjectformant dispersionen
dc.subjectfundamental frequencyen
dc.subjectformant positionen
dc.subjectobesityen
dc.subjectfat distributionen
dc.subjectbody shapeen
dc.titleAssessment of the obesity based on voice perceptionen
dc.typeArticle
dc.page.number43-60
dc.contributor.authorAffiliationPawelec, Łukasz - Division of Anthropology, Institute of Environmental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciencesen
dc.contributor.authorAffiliationKierczak, Karolina - Division of Anthropology, Institute of Environmental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciencesen
dc.contributor.authorAffiliationLipowicz, Anna - Division of Anthropology, Institute of Environmental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciencesen
dc.identifier.eissn2083-4594
dc.referencesArmstrong MM, Lee AJ, Feinberg DR. 2019. A house of cards: bias in perception of body size mediates the relationship between voice pitch and perceptions of dominance. Anim Behav 147:43–51, https://doi.org/10.1016/j.anbehav.2018.11.005en
dc.referencesArnocky S, Hodges-Simeon CR, Ouellette D, Albert G. 2018. Do men with more masculine voices have better immunocompetence? Evol Hum Behav 39(6):602–10, https://doi.org/10.1016/j.evolhumbehav.2018.06.003en
dc.referencesBarsties B, Verfaillie R, Roy N, Maryn Y. 2013. Do body mass index and fat volume influence vocal quality, phonatory range, and aerodynamics in females? CoDAS 25(4):310–318, https://doi.org/10.1590/s2317-17822013000400003en
dc.referencesBoersma P, Weenink D. 2019. Praat: doing phonetics by computer [Computer program]. Version 6.0.56; http://www.praat.org/ [Accessed 20 June 2019].en
dc.referencesByeon H, Cha S. 2020. Evaluating the effects of smoking on the voice and subjective voice problems using a meta-analysis approach. Sci Rep 10(1):1–8, https://doi.org/10.1038/s41598-020-61565-3en
dc.referencesCelebi S, Yelken K, Develioglu ON, Topak M, Celik O, Ipek HD, Kulekci M. 2013. Acoustic, perceptual and aerodynamic voice evaluation in an obese population. J Laryngol Otol 127(10):987–90, https://doi.org/10.1017/S0022215113001916en
dc.referencesCollins SA. 2000. Men’s voices and women’s choices. Anim behav 60(6):773–780, https://doi.org/10.1006/anbe.2000.1523en
dc.referencesDa Cunha MGB, Passerotti GH, Weber R, Zilberstein B, Cecconello I. 2009. Voice feature characteristic in morbid obese population. Obes Surg 21(3):340–4, https://doi.org/10.1007/s11695-009-9959-7en
dc.referencesEvans S, Neave N, Wakelin D. 2006. Relationships between vocal characteristics and body size and shape in human males: An evolutionary explanation for a deep male voice. Biol Psychol 72(2):160–3, https://doi.org/10.1016/j.biopsycho.2005.09.003en
dc.referencesFant G. 1970. Acoustic theory of speech production (No. 2). Walter de Gruyter. https://doi.org/10.1515/9783110873429.13en
dc.referencesFerrand CT. 2002. Harmonics-to-noise ratio: An index of vocal aging. J Voice 16(4):480–7, https://doi.org/10.1016/S0892-1997(02)00123-6en
dc.referencesFitch WT. 1997. Vocal tract length and formant frequency dispersion correlate with body size in rhesus macaques. J Acoust Soc Am 102(2):1213–22, https://doi.org/10.1121/1.421048en
dc.referencesGarbaniuk O. 2016. Wykorzystywanie procedury sędziów kompetentnych w naukach społecznych i możliwości jej oceny psychometrycznej za pomocą narzędzi dostępnych w Statistica. Uniwersytet Zielonogórski i Katolicki Uniwersytet Lubelski Jana Pawła II. https://doi.org/10.33141/po.2020.12.02en
dc.referencesGonzález J. 2004. Formant frequencies and body size of speaker: A weak relationship in adult humans. J Phon Academic Press 32(2):277–87, https://doi.org/10.1016/S0095-4470(03)00049-4en
dc.referencesGregory SW. 1994. Sounds of power and deference: acoustic analysis of macro social constraints on micro interaction. Sociol Perspect 37:497–526, https://doi.org/10.2307/1389277en
dc.referencesHamdan ALH, Al-Barazi R, Tabri D, Saade R, Kutkut I, Sinno S, Nassar J. 2012. Relationship between acoustic parameters and body mass analysis in young males. J Voice 26(2):144–7, https://doi.org/10.1016/j.jvoice.2011.01.011en
dc.referencesHamdan ALH, Jabbour J, Nassar J, Dahouk I, Azar ST. 2013a. Vocal characteristics in patients with type 2 diabetes mellitus. Eur Arch Oto-Rhino-L 269(5):1489–95, https://doi.org/10.1016/j.jvoice.2012.09.005en
dc.referencesHamdan ALH, Al Barazi R, Khneizer G, Turfe Z, Sinno S, Ashkar J, Tabri D. 2013b. Formant frequency in relation to body mass composition. J Voice 27(5):567–71, https://doi.org/10.1016/j.jvoice.2012.09.005en
dc.referencesHamdan ALH, Dowli A, Barazi R, Jabbour J, Azar S. 2014. Laryngeal sensory neuropathy in patients with diabetes mellitus. J Laryngol Otol 128(8):725–9, https://doi.org/10.1017/S002221511400139Xen
dc.referencesHodges-Simeon CR, Gurven M, Puts DA, Gaulin SJC. 2014. Vocal fundamental and formant frequencies are honest signals of threat potential in peripubertal males. Behav Ecol 25(4):984–8, https://doi.org/10.1093/beheco/aru081en
dc.referencesHughes SM, Harrison MA, Gallup Jr GG. 2002. The sound of symmetry: Voice as a marker of developmental instability. Evol Hum Behav 23(3):173–80, https://doi.org/10.1016/S1090-5138(01)00099-Xen
dc.referencesJanjić J, Baltić MŽ, Glišić M, Ivanović J, Bošković M, Popović M, Lovrenović M. 2016. Relationship between body mass index and body fat percentage among adolescents from Serbian Republic Child Obes 1(2):9, https://doi.org/10.21767/2572-5394.10009en
dc.referencesKantarci F, Mihmanli I, Demirel MK, Harmanci K, Akman C, Aydogan F, Mihmanli A, Uysal O. 2004. Normal Diaphragmatic Motion and the Effects of Body Composition: Determination with M-Mode Sonography. J Ultrasound Med 23(2):255–60, https://doi.org/10.7863/jum.2004.23.2.255en
dc.referencesLass NJ, Davis M. 1976. An investigation of speaker height and weight identification. J Acoust Soc Am 60(3):700–3, https://doi.org/10.1121/1.381142en
dc.referencesLass NJ, Brong GW, Ciccolella SA, Walters SC, Maxwell EL. 1980. An investigation of speaker height and Weight Discriminations by means of paired comparison judgments. J Phon 8(2):205–12, https://doi.org/10.1016/S0095-4470(19)31465-2en
dc.referencesLechien JR, Finck C, Costa de Araujo P, Huet K, Delvaux V, Piccaluga M, Harmegnies B, Saussez S. 2017. Voice outcomes of laryngopharyngeal reflux treatment: a systematic review of 1483 patients. Eur Arch Oto-Rhino-L 274(1):1–23, https://doi.org/10.1007/s00405-016-3984-7en
dc.referencesMoreira TDC, Gadenz C, Figueiró LR, Capobianco DM, Cunha K, Ferigolo M, Barros HMT, Cassol M. 2015. Substance use, voice changes and quality of life in licit and illicit drug users. Revista CEFAC 17:374–384, https://doi.org/10.1590/1982-021620156714en
dc.referencesOguchi T, Kikuchi H. 1997. Voice and interpersonal attraction. Jpn Psychol Res 39:56–61, https://doi.org/10.1111/1468-5884.00037en
dc.referencesPawelec ŁP, Graja K, Lipowicz A. 2022a. Vocal Indicators of Size, Shape and Body Composition in Polish Men. J Voice 36(6):878.e9-878.22, https://doi.org/10.1016/j.jvoice.2020.09.011en
dc.referencesPawelec ŁP, Lipowicz A, Czak M, Mitas AW. 2022b. The Microphone Type and Voice Acoustic Parameters Values–A Comparative Study. In International Conference on Information Technologies in Biomedicine (pp. 421–431). Springer, Cham. https://doi.org/10.1007/978-3-031-09135-3_35en
dc.referencesPisanski K, Rendall D. 2011. The prioritization of voice fundamental frequency or formants in listeners’ assessments of speaker size, masculinity, and attractiveness. J Acoust Soc Am 129(4):2201–12, https://doi.org/10.1121/1.3552866en
dc.referencesPisański K, Fraccaro PJ, Tigue CC, O’Connor JJM, Röder S, Andrews PW, Fink B, De-Bruine LM, Jones BC, Feinberg DR. 2014. Vocal indicators of body size in men and women: a meta-analysis. Anim Behav 95:89–99, https://doi.org/10.1016/j.anbehav.2014.06.011en
dc.referencesPisanski K, Jones BC, Fink B, O’Connor JJM, DeBruine LM, Röder S, Feinberg DR. 2016. Voice parameters predict sex-specific body morphology in men and women. Anim Behav 112:13–22, https://doi.org/10.1016/j.anbehav.2015.11.008en
dc.referencesPisanski K, Oleszkiewicz A, Sorokowska A. 2016. Can blind persons accurately assess body size from the voice? Biol Lett 12(4), https://doi.org/10.1098/rsbl.2016.0063en
dc.referencesPuts DA, Gaulin SJC, Verdolini K. 2006. Dominance and the evolution of sexual dimorphism in human voice pitch. Evol Hum Behav 27:283–296, https://doi.org/10.1016/j.evolhumbehav.2005.11.003en
dc.referencesPuts DA, Hodges CR, Cárdenas RA, Gaulin SJ. 2007. Men’s voices as dominance signals: vocal fundamental and formant frequencies influence dominance attributions among men. Evol Hum Behav 28(5):340–4, https://doi.org/10.1016/j.evolhum behav.2007.05.002en
dc.referencesPuts DA, Apicella CL, Cárdenas RA. 2012. Masculine voices signal men’s threat potential in forager and industrial societies. Proc Royal Soc B 279(1728):601–9, https://doi.org/10.1098/rspb.2011.0829en
dc.referencesRaine J, Pisanski K, Simner J, Reby D. 2019. Vocal communication of simulated pain. Bioacoustics 28(5):404–26, https://doi.org/10.1080/09524622.2018.1463295en
dc.referencesRamel A, Halldorsson TI, Tryggvadottir EA, Martinez JA, Kiely M, Bandarra NM, Thorsdottir I. 2013. Relationship between BMI and body fatness in three European countries. Eur J Clin Nutr, 67(3):254–8, https://doi.org/10.1038/ejcn.2013.6en
dc.referencesRavi R, Gunjawate DR. 2019. Effect of diabetes mellitus on voice: a systematic review. Pract Diabetes 36(5):177–80, https://doi.org/10.1002/pdi.2240en
dc.referencesRendall D, Kollias S, Ney C, Lloyd P. 2005. Pitch (F0) and formant profiles of human vowels and vowel-like baboon grunts: The role of vocalizer body size and voice-acoustic allometry. J Acoust Soc Am 117(2):944–55, https://doi.org/10.1121/1.1848011en
dc.referencesRendall D, Vokey JR, Nemeth C. 2007. Lifting the Curtain on the Wizard of Oz: Biased Voice-Based Impressions of Speaker Size. J Exp Psychol Hum Percept Perform 33(5):1208–19, https://doi.org/10.1037/0096-1523.33.5.1208en
dc.referencesSouza LB, Pereira RM, Santos MM, Godoy CM. 2014. Fundamental frequency, phonation maximum time and vocal complaints in morbidly obese women. Arq Bras Cir Dig 27(1):43–6, https://doi.org/10.1590/S0102-67202014000100011en
dc.referencesSell A, Bryant GA, Cosmides L, Tooby J, Sznycer D, Von Rueden C, Krauss A, Gurven M. 2010. Adaptations in humans for assessing physical strength from the voice. Proc Royal Soc B 277(1699):3509–18, https://doi.org/10.1098/rspb.2010.0769en
dc.referencesSidorova J, Carbonell P, Čukić M. 2020. Blood glucose estimation from voice: first review of successes and challenges. J Voice. Epub ahead of print, https://doi.org/10.1016/j.jvoice.2020.08.034en
dc.referencesSingh D. 1993. Adaptive significance of female physical attractiveness: role of waist-to-hip ratio. J Pers Soc Psychol 65(2):293–307, https://doi.org/10.1037//0022-3514.65.2.293en
dc.referencesSingh D. 1995. Female judgment of male attractiveness and desirability for relationships: role of waist-to-hip ratio and financial status. J Pers Soc Psychol 69(6):1089–101, https://doi.org/10.1037//0022-3514.69.6.1089en
dc.referencesPinyopodjanard S, Suppakitjanusant P, Lomprew P, Kasemkosin N, Chailurkit L, Ongphiphadhanakul B. 2021. Instrumental acoustic voice characteristics in adults with type 2 diabetes. J Voice 35(1):116–21, https://doi.org/10.1016/j.jvoice.2019.07.003en
dc.referencesSondhi S, Khan M, Vijay R, Salhan AK. 2015. Vocal indicators of emotional stress. Int J Comput Appl 122(15):38–43, https://doi.org/10.5120/21780-5056en
dc.referencesSouza LBR, Santos MM. 2018. Body mass index and acoustic voice parameters: is there a relationship? Braz J Otorhinolaryngol 84(4):410–15, https://doi.org/10.1016/j.bjorl.2017.04.003en
dc.referencesTarafder KH, Datta PG, Tariq A. 2012. The aging voice. BSSMU 5(1):83–86, https://doi.org/10.3329/BSMMUJ.V5I1.11033en
dc.referencesTeixeira JP, Fernandes PO. 2014. Jitter, shimmer and HNR classification within gender, tones and vowels in healthy voices. Proc Technol 16:1228–1237, https://doi.org/10.1016/j.protcy.2014.10.138en
dc.referencesWang Y, Zeinali-Davarani S, Davis EC, Zhang Y. 2015. Effect of glucose on the biomechanical function of arterial elastin. J Mech Behav Biomed Mater 49:244–54, https://doi.org/10.1016/j.jmbbm.2015.04.025en
dc.referencesWolfe VI, Ratusnik DL, Smith FH, Northrop G. 1990. Intonation and fundamental frequency in male-to-female transsexuals. J Speech Hear Dis 55(1):43–50, https://doi.org/10.1044/jshd.5501.43en
dc.contributor.authorEmailPawelec, Łukasz - lukasz.pawelec@upwr.edu.pl
dc.contributor.authorEmailKierczak, Karolina - karolina.kierczak@upwr.edu.pl
dc.contributor.authorEmailLipowicz, Anna - anna.lipowicz@upwr.edu.pl
dc.identifier.doi10.18778/1898-6773.85.4.04
dc.relation.volume85


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0