Pokaż uproszczony rekord

dc.contributor.authorJanasz, Marek
dc.contributor.editorKrasiński, Tadeusz
dc.contributor.editorSpodzieja, Stanisław
dc.date.accessioned2022-12-22T16:10:04Z
dc.date.available2022-12-22T16:10:04Z
dc.date.issued2022
dc.identifier.citationJanasz M., On the nearly free simplicial line arrangements with up to 27 lines, [in:] Analitic and Algebraic Geometry 4, T. Krasiński, S. Spodzieja (ed.), WUŁ, Łódź 2022, https://doi.org/10.18778/8331-092-3.07pl_PL
dc.identifier.isbn978-83-8331-092-3
dc.identifier.urihttp://hdl.handle.net/11089/44831
dc.description.abstractIn the present note we provide a complete classification of nearly free (and not free simultaneously) simplicial arrangements of d ⩽ 27 lines.pl_PL
dc.language.isoenpl_PL
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl_PL
dc.relation.ispartofAnalitic and Algebraic Geometry 4;
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleOn the nearly free simplicial line arrangements with up to 27 linespl_PL
dc.typeBook chapterpl_PL
dc.page.number75-82pl_PL
dc.contributor.authorAffiliationUniwersytet Pedagogiczny w Krakowie, Instytut Matematykipl_PL
dc.identifier.eisbn978-83-8331-093-0
dc.referencesM. Cuntz, Simplicial arrangements with up to 27 lines. Discrete Comput. Geom. 48 (2012), no. 3, 682–701.pl_PL
dc.referencesM. Cuntz and D. Geis, Combinatorial simpliciality of arrangements of hyperplanes. Beitr. Algebra Geom. 56 (2015), no. 2, 439–458.pl_PL
dc.referencesW. Decker, G.-M. Greuel, G. Pfister, and H. Sch¨onemann, Singular 4-1-1 — A computer algebra system for polynomial computations. http://www.singular.uni-kl.de, 2018.pl_PL
dc.referencesA. Dimca, Hyperplane arrangements. An introduction. Universitext Cham: Springer. xii, 200 pp. 2017.pl_PL
dc.referencesA. Dimca, Freeness versus Maximal Global Tjurina Number for Plane Curves. Math. Proc. Camb. Philos. Soc. 163 (2017), no. 1, 161–172.pl_PL
dc.referencesA. Dimca and G. Sticlaru, Free and Nearly Free Curves vs. Rational Cuspidal Plane Curves. Publ. Res. Inst. Math. Sci. 54 (2018), no. 1, 163–179.pl_PL
dc.referencesE. Melchior. ¨ Uber Vielseite der Projektive Ebene. Deutsche Mathematik. 5 (1941), 461–475.pl_PL
dc.referencesB. Gr¨unbaum, A catalogue of simplicial arrangements in the real projective plane. Ars Math. Contemp. 2 (2009), 1–25.pl_PL
dc.referencesP. Orlik and H. Terao, Arrangements of hyperplanes. Grundlehren der Mathematischen Wissenschaften. 300. Berlin: Springer- Verlag. xviii, 325 pp. 1992.pl_PL
dc.contributor.authorEmailmarek.janasz@up.krakow.plpl_PL
dc.identifier.doi10.18778/8331-092-3.07


Pliki tej pozycji

Thumbnail
Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe