dc.contributor.author | Zakrzewska, Aleksandra | |
dc.contributor.editor | Krasiński, Tadeusz | |
dc.contributor.editor | Spodzieja, Stanisław | |
dc.date.accessioned | 2022-12-22T16:09:06Z | |
dc.date.available | 2022-12-22T16:09:06Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Zakrzewska A., An estimation of the jump of the Milnor number of plane curve singularities, [in:] Analitic and Algebraic Geometry 4, T. Krasiński, S. Spodzieja (ed.), WUŁ, Łódź 2022, https://doi.org/10.18778/8331-092-3.14 | pl_PL |
dc.identifier.isbn | 978-83-8331-092-3 | |
dc.identifier.uri | http://hdl.handle.net/11089/44830 | |
dc.description.abstract | Skokiem liczby Milnora osobliwości izolowanej nazywamy najmniejszą niezerową różnicę między liczbą Milnora osobliwości a liczbą Milnora jednej z jej osobliwości. W pracy za pomocą diagramów Enriquesa wyznaczone zostały takie osobliwości dla których skok liczby Milnora wynosi 1. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl_PL |
dc.relation.ispartof | Analitic and Algebraic Geometry 4; | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Milnor number | pl_PL |
dc.subject | Enriques diagram | pl_PL |
dc.subject | plane curve singularities | pl_PL |
dc.title | An estimation of the jump of the Milnor number of plane curve singularities | pl_PL |
dc.type | Book chapter | pl_PL |
dc.page.number | 175-183 | pl_PL |
dc.contributor.authorAffiliation | Uniwersytet Łódzki, Wydział Matematyki i Informatyki | pl_PL |
dc.identifier.eisbn | 978-83-8331-093-0 | |
dc.references | M. Alberich-Carrami˜nana, J. Ro´e, Enriques diagrams and adjacency of planar curve singularities. Canad. J. Math. 57 (2005), no. 1, 3–16. | pl_PL |
dc.references | S. Brzostowski, T. Krasi´nski, The jump of the Milnor number in the X9 singularity class. Cent. Eur. J. Math. 12 (2014), no. 3, 429–435. | pl_PL |
dc.references | S. Brzostowski, T. Krasi´nski, J. Walewska, Milnor numbers in deformations of homogeneous singularities. Bull. Sci. Math. 168 (2021), Paper No. 102973, 15 pp. | pl_PL |
dc.references | A. Bodin, Jump of Milnor numbers. Bull. Braz. Math. Soc. (N.S.) 38 (2007), no. 3, 389–396. | pl_PL |
dc.references | E. Casas-Alvero, Singularities of plane curves. London Mathematical Society Lecture Note Series, 276. Cambridge University Press, Cambridge, 2000. xvi+345 pp. | pl_PL |
dc.references | J. Fern´andez de Bobadilla, M. Pe Pereira, P. Popescu-Pampu, On the generalized Nash problem for smooth germs and adjacencies of curve singularities. Adv. Math. 320 (2017), 1269–1317. | pl_PL |
dc.references | A. du Plessis, T. Wall, The geometry of topological stability. London Mathematical Society Monographs. New Series, 9. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995. viii+572 pp. | pl_PL |
dc.references | G.-M. Greuel, C. Lossen, E. Shustin, Introduction to singularities and deformations. Springer Monographs in Mathematics. Springer, Berlin, 2007. xii+471 pp. | pl_PL |
dc.references | S. Gusein-Zade, On singularities from which an A1 can be split off. Funct. Anal. Appl. 27 (1993), no. 1,:57–60. | pl_PL |
dc.references | A. G. Kouchnirenko, Poly`edres de Newton et nombres de Milnor. (French) Invent. Math. 32 (1976), no. 1, 1–31. | pl_PL |
dc.references | S. Kleiman, R. Piene, Enumerating singular curves on surfaces. In Algebraic geometry: Hirzebruch 70 (Warsaw, 1998), 209–238, Contemp. Math., 241, Amer. Math. Soc., Providence, RI, 1999. | pl_PL |
dc.references | T. Krasi´nski, J. Walewska, Non-degenerate jumps of the Milnor numbers of quasihomogeneous singularities. Ann. Pol. Math. 123 (2019), 369–386. | pl_PL |
dc.references | J. Walewska, The jump of Milnor numbers in families of non-degenerate and nonconvenient singularities. In Analytic and Algebraic Geometry, L´od´z University Press, pages 141–153, 2013. | pl_PL |
dc.references | A. Zakrzewska, The jump of Milnor number of quasihomogeneous plane singularities for linear deformations. Preprint on webpage at https://www.math.uni.lodz.pl/azakrzewska/article.pdf. | pl_PL |
dc.references | A. Zakrzewska, The jump of Milnor number for linear deformations of homogeneous singularities. Bull. Soc. Sci. Lettres d Sr. Rech. Dform. 67 (2017), no. 3, 77–88. | pl_PL |
dc.contributor.authorEmail | aleksandra.zakrzewska@wmii.uni.lodz.pl | pl_PL |
dc.identifier.doi | 10.18778/8331-092-3.14 | |