dc.contributor.author | Abdullah, Abdulljabar Naji | |
dc.contributor.author | Rosiak, Klaudia | |
dc.contributor.author | Spodzieja, Stanisław | |
dc.contributor.editor | Krasiński, Tadeusz | |
dc.contributor.editor | Spodzieja, Stanisław | |
dc.date.accessioned | 2022-12-22T16:03:25Z | |
dc.date.available | 2022-12-22T16:03:25Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Abdullah A. N., Rosiak K., Spodzieja S., Convexifying of polynomials by convex factor, [in:] Analitic and Algebraic Geometry 4, T. Krasiński, S. Spodzieja (ed.), WUŁ, Łódź 2022, https://doi.org/10.18778/8331-092-3.03 | pl_PL |
dc.identifier.isbn | 978-83-8331-092-3 | |
dc.identifier.uri | http://hdl.handle.net/11089/44826 | |
dc.description.abstract | W pracy podajemy nowe wyniki dotyczące "uwypuklania" wielomianów rzeczywistych, a w szczególności uogólniamy niektóre z rezultatów z pracy K. Kurdyka, S. Spodzieja, „Convexifying positive polynomials and sums of squares approximation”, SIAM J. Optim. 25 (2015), no. 4, 2512-2536. Pokazujemy też pewne zastosowania uzyskanych wyników w optymalizacji. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl_PL |
dc.relation.ispartof | Analitic and Algebraic Geometry 4; | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | strongly convex function | pl_PL |
dc.subject | polynomial | pl_PL |
dc.subject | convex function | pl_PL |
dc.title | Convexifying of polynomials by convex factor | pl_PL |
dc.type | Book chapter | pl_PL |
dc.page.number | 21-51 | pl_PL |
dc.contributor.authorAffiliation | Uniwersytet Łódzki, Wydział Matematyki i Informatyki | pl_PL |
dc.contributor.authorAffiliation | Uniwersytet Łódzki, Wydział Matematyki i Informatyki | pl_PL |
dc.contributor.authorAffiliation | Uniwersytet Łódzki, Wydział Matematyki i Informatyki | pl_PL |
dc.identifier.eisbn | 978-83-8331-093-0 | |
dc.references | H. Attouch, J. Bolte, P. Redont, A. Soubeyran, Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka- Lojasiewicz inequality. Math. Oper. Res. 35 (2010), no. 2, 438–457. | pl_PL |
dc.references | J. Bochnak, S. Lojasiewicz, A converse of the Kuiper-Kuo theorem. Proceedings of Liverpool Singularities—Symposium, I (1969/70), pp. 254–261. Lecture Notes in Math., Vol. 192. Springer, Berlin, 1971. | pl_PL |
dc.references | G. Jeronimo, D. Perrucci, E. Tsigaridas, On the minimum of a polynomial function on a basic closed semialgebraic set and applications. SIAM J. Optim. 23 (2013), no. 1, 241–255. | pl_PL |
dc.references | K. Kurdyka, T. Mostowski, A. Parusi´nski, Proof of the gradient conjecture of R. Thom. Ann. of Math. (2) 152 (2000), no. 3, 763–792. | pl_PL |
dc.references | K. Kurdyka, S. Spodzieja, Convexifying positive polynomials and sums of squares approximation. SIAM J. Optim. 25 (2015), no. 4, 2512–2536. | pl_PL |
dc.references | K. Kurdyka, S. Spodzieja, Separation of real algebraic sets and the Lojasiewicz exponent. Proc. Amer. Math. Soc. 142 (2014), no. 9, 3089–3102. | pl_PL |
dc.references | K. Kurdyka, K. Rudnicka, S. Spodzieja, Exponential convexifying positive polynomials. Bull. Sci. Math. 180 (2022), Paper No. 103197, 23 pp. | pl_PL |
dc.references | S. Lojasiewicz, Une propri´et´e topologique des sous-ensembles analytiques r´eels. (French) 1963 Les E˙ quations aux D´eriv´ees Partielles (Paris, 1962) pp. 87–89 E˙ ditions du Centre National de la Recherche Scientifique, Paris. | pl_PL |
dc.references | S. Lojasiewicz, Ensembles semi-analytiques, preprint IHES, 1965. | pl_PL |
dc.references | S. Lojasiewicz, Sur les trajectoires du gradient d’une fonction analytique. (French) [Trajectories of the gradient of an analytic function] Geometry seminars, 1982–1983 (Bologna, 1982/1983), 115–117, Univ. Stud. Bologna, Bologna, 1984. | pl_PL |
dc.references | Y. Nesterov, Introductory lectures on convex optimization. A basic course. Applied Optimization, 87. Kluwer Academic Publishers, Boston, MA, 2004. | pl_PL |
dc.references | R. T. Rockafellar, Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14 (1976), no. 5, 877–898. | pl_PL |
dc.references | K. Rosiak Convexifying of polynomials [Uwypuklanie wielomian´ow] (in Polish), Master Thesis, University of Lodz, Lodz 2020, 37 pp. | pl_PL |
dc.references | R. Thom, Probl`emes rencontr´es dans mon parcours math´ematique: un bilan, Publ. Math. IHES 70 (1989), 200–214. | pl_PL |
dc.references | A.Wilkie, Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function. J. Amer. Math. Soc. 9 (1996), no. 4, 1051–1094. | pl_PL |
dc.contributor.authorEmail | abdulljabar.abdullah@uni.lodz.eu | pl_PL |
dc.contributor.authorEmail | klaudia.rosiak@uni.lodz.eu | pl_PL |
dc.contributor.authorEmail | stanislaw.spodzieja@wmii.uni.lodz.pl | pl_PL |
dc.identifier.doi | 10.18778/8331-092-3.03 | |