dc.contributor.author | Lenarcik, Andrzej | |
dc.contributor.author | Masternak, Mateusz | |
dc.contributor.editor | Krasiński, Tadeusz | |
dc.contributor.editor | Spodzieja, Stanisław | |
dc.date.accessioned | 2022-12-22T16:02:44Z | |
dc.date.available | 2022-12-22T16:02:44Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Lenarcik A., Masternak M., Effective proof of Guseĭn-Zade theorem that branches may be deformed with jump one, [in:] Analitic and Algebraic Geometry 4, T. Krasiński, S. Spodzieja (ed.), WUŁ, Łódź 2022, https://doi.org/10.18778/8331-092-3.09 | pl_PL |
dc.identifier.isbn | 978-83-8331-092-3 | |
dc.identifier.uri | http://hdl.handle.net/11089/44824 | |
dc.description.abstract | W pracy podajemy efektywny dowód twierdzenia Gusein-Zade, że osobliwe nierozkładalne lokalne krzywe płaskie (gałęzie) mogą być deformowane ze skokiem liczby Milnora równym jeden. W dowodzie korzystamy z wersji twierdzenia Kouchnirenki dostosowanej do algorytmu Newtona w wersji Cano przedstawionego w pracy A.Lenarcik „Polar quotients of plane curve and the Newton algorithm, Kodai Math. J. 27 (2004), 336-353. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl_PL |
dc.relation.ispartof | Analitic and Algebraic Geometry 4; | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | milnor number | pl_PL |
dc.subject | Newton algorithm | pl_PL |
dc.subject | plane curve singularity | pl_PL |
dc.title | Effective proof of Guseĭn-Zade theorem that branches may be deformed with jump one | pl_PL |
dc.type | Book chapter | pl_PL |
dc.page.number | 95-119 | pl_PL |
dc.contributor.authorAffiliation | Uniwersytet Technologiczny w Kielcach, Wydział Matematyki i Fizyki | pl_PL |
dc.contributor.authorAffiliation | Uniwersytet im. Jana Kochanowskiego, Wydział Matematyki | pl_PL |
dc.identifier.eisbn | 978-83-8331-093-0 | |
dc.references | V. I. Arnold, Arnold’s problems, Springer-Verlag, Berlin; PHASIS, Moscow: Translated and revised of the 2000 Russian original, p. 2004. Philippov, A. Yakivchik and M. Peters, with a preface by V (2004). | pl_PL |
dc.references | A. Bodin, Jump of Milnor numbers, Bull. Braz. Math. Soc., New Series 38 (2007), no. 3, 389–396. | pl_PL |
dc.references | S. Brzostowski, T. Krasiński, The jump of the Milnor number in the X9 singularity class, Centr. Eur. J. Math. 12 (2014), no. 3, 429–435. | pl_PL |
dc.references | S. Brzostowski, T. Krasiński, J. Walewska, Milnor numbers in deformations of homogeneous singularities, Bull. Sci. Math. 168 (2021), Paper No. 102973, 15 pp. | pl_PL |
dc.references | J. Cano, The Puiseux theorem for differential equations, in: Singularity Theory, D. T. Lê, K. Saito, B. Teissier (eds), Word Scientific Publ., 1995, 128–152. | pl_PL |
dc.references | Pi. Cassou-Noguès and A. Płoski, Invariants of plane curve singularities and Newton diagrams, Univ. Iagel. Acta. Math. 49 (2011), 9–34. | pl_PL |
dc.references | E. R. García Barroso, A. Lenarcik and A. Płoski, Characterization of non-degenerate plane curve singularities, Univ. Iagel. Acta Math. 45 (2007), 27–36 with Erratum: Univ. Iagel. Acta Math. 47 (2009), 321–322. | pl_PL |
dc.references | E. R. García Barroso and A. Płoski, An approach to plane algebroid branches, Rev. Mat. Complut. 28 (2015), no. 1, 227–252. | pl_PL |
dc.references | G. M. Greuel, C. Lossen, E. Shustin, Introduction to singularities and deformations, Springer monographs in mathematics, Springer, Berlin (2007). | pl_PL |
dc.references | S. Guse˘ın-Zade, On singularities from which an A1 can be split off , Func. Anal. Appl., 27 (1993), 57–59. | pl_PL |
dc.references | J. Gwoździewicz, Generalized Noether’s Formulas for plane curve singularities, Univ. Iagel. Acta Math. 48 (2010), 55–62. | pl_PL |
dc.references | J. Gwoździewicz, A. Lenarcik and A. Płoski, Polar invariants of plane curve singularities: intersection theoretical approach, Demonstratio Math. 43 (2010), no. 2, 303–323. | pl_PL |
dc.references | J. Gwoździewicz and A. Płoski, On the Merle formula for polar invariants, Bull. Soc. Sci. Letters Łódź 41 (1991), no. 7, 61–67. | pl_PL |
dc.references | A. G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Inv. Math. 32, (1976), 1–31. | pl_PL |
dc.references | T. C. Kuo, Y. C. Lu, On analytic function germ of two complex variables, Topology 16 (1977), 299–310. | pl_PL |
dc.references | T. C. Kuo, A. Parusiński, Newton polygon relative to an arc, in: Real and Complex Singularities, J. W. Bruce and F. Tari (eds), São Carlos, 1998, 76–93. | pl_PL |
dc.references | T. C. Kuo, A. Parusiński, Newton-Puiseux roots of jacobian determinants, J. Algebraic Geometry 13 (2004), 579–601. | pl_PL |
dc.references | A. Lenarcik, Newton algorithm and Puiseux series, Proceedings of the XXIV Conference of Analytic and Algebraic Geometry, Łódź 2003, 22–32 (in Polish, French version exists). | pl_PL |
dc.references | A. Lenarcik, Polar quotients of a plane curve and the Newton algorithm, Kodai Math. J. 27 (2004), 336–353. | pl_PL |
dc.references | A. Lenarcik, On logarithmic distance between branches, in: Proceedings of the XXXVI Conference of Analytic and Algebraic Geometry, Łódź, 2015, 25–40 (in Polish). | pl_PL |
dc.references | M. Michalska, J. Walewska, Milnor numbers of deformations of semi-quasi-homogeneous plane curve singularities, Bull. Brazil Math. Soc., New Series 50 (2019), no. 1, 95–117. | pl_PL |
dc.references | A. Płoski, Puiseux series, Newton diagrams and holomorhic mappings of C, in: Materiały X Konferencji Szkoleniowej z Teorii Zagadnień Ekstremalnych, Łódź, 1989, 74–99 (in Polish). | pl_PL |
dc.references | R. Walker, Algebraic curves, Princeton University Press, 1950. | pl_PL |
dc.references | H. Whitney, Complex Analytic Varieties, Addison-Wesley, Reading, 1972. | pl_PL |
dc.references | O. Zariski, Le problème des modules pour les branches planes, Hermann, Paris, 1986. | pl_PL |
dc.contributor.authorEmail | ztpal@tu.kielce.pl | pl_PL |
dc.contributor.authorEmail | mateusz.masternak@ujk.edu.pl | pl_PL |
dc.identifier.doi | 10.18778/8331-092-3.09 | |