dc.contributor.author | Gryszka, Karol | |
dc.contributor.editor | Krasiński, Tadeusz | |
dc.contributor.editor | Spodzieja, Stanisław | |
dc.date.accessioned | 2022-12-22T15:58:51Z | |
dc.date.available | 2022-12-22T15:58:51Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Gryszka K., Lefschetz numbers and asymptotic periods, [in:] Analitic and Algebraic Geometry 4, T. Krasiński, S. Spodzieja (ed.), WUŁ, Łódź 2022, https://doi.org/10.18778/8331-092-3.06 | pl_PL |
dc.identifier.isbn | 978-83-8331-092-3 | |
dc.identifier.uri | http://hdl.handle.net/11089/44823 | |
dc.description.abstract | In this note we prove several results linking Lefschetz numbers
with asymptotic behaviour of the orbit in flows. With the aid of the Lefschetz
fixed point theorem and the presence of a non-trivial limit set we prove the
existence of asymptotically non-periodic orbits. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl_PL |
dc.relation.ispartof | Analitic and Algebraic Geometry 4; | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Lefschetz numbers | pl_PL |
dc.subject | asymptotic periods | pl_PL |
dc.title | Lefschetz numbers and asymptotic periods | pl_PL |
dc.type | Book chapter | pl_PL |
dc.page.number | 67-73 | pl_PL |
dc.contributor.authorAffiliation | Uniwersytet Pedagogiczny w Krakowie, Instytut Matematyki | pl_PL |
dc.identifier.eisbn | 978-83-8331-093-0 | |
dc.references | N. P. Bhatia and G. P. Szeg¨o, Stability Theory of Dynamical Systems, Springer–Verlang, Berling–Heidelberg–New York, 1970. | pl_PL |
dc.references | J. Dugundji, A. Granas, Fixed point theory, Springer Monographs in Mathematics. Springer– Verlag, New York, 2003. | pl_PL |
dc.references | O. Ege, I. Karaca, Lefschetz fixed point theorem for digital images. Fixed Point Theory Appl. 253 (2013), 13 pp. | pl_PL |
dc.references | M. Fakhar, Z. Soltani, J. Zafarani, The Lefschetz fixed point theorem and its application to asymptotic fixed point theorem for set-valued mappings. J. Fixed Point Theory Appl. 17 (2015), 287–300. | pl_PL |
dc.references | K. Gryszka, Asymptotic period in dynamical systems in metric spaces, Colloq. Math. 139 (2015), 245–257. | pl_PL |
dc.references | K. Gryszka, Lagrange stability and asymptotic periods, Topology Appl. 204 (2016), 168–174. | pl_PL |
dc.references | K. Gryszka, On Asymptoically periodic-like motions in flows, Ann. Univ. Paedagog. Crac. Stud. Math 17 (2018), 45–57. | pl_PL |
dc.references | S. Lefschetz, Continuous transformations on manifolds, Proc. NAS USA 9 (1923), 90–93. | pl_PL |
dc.references | S. Lefschetz, Intersections and transformations of complexes and manifolds, Trans. AMS 28 (1926), 1–49. | pl_PL |
dc.references | S. Lefschetz, Manifolds with a boundary and their transformations, Trans. AMS 29 (1927), 429–462. | pl_PL |
dc.references | S. Lefschetz, On the fixed point formula, Ann. of Math. 38 (1937), 819–822. | pl_PL |
dc.references | A. D. Myshkis, Generalizations of the theorem of a fixed point of a dynamical systems inside of a closed trajectory (Russian), Mat. Sbornik N. S. 34 (1954), 525–540. | pl_PL |
dc.references | V. V. Nemytskii and V. V. Stephanov, Qualitative Theory of Differential Equations, Princeton University Press, 1960. | pl_PL |
dc.contributor.authorEmail | karol.gryszka@up.krakow.pl | pl_PL |
dc.identifier.doi | 10.18778/8331-092-3.06 | |