dc.contributor.author | Brzostowski, Szymon | |
dc.contributor.author | Krasiński, Tadeusz | |
dc.contributor.author | Oleksik, Grzegorz | |
dc.contributor.editor | Krasiński, Tadeusz | |
dc.contributor.editor | Spodzieja, Stanisław | |
dc.date.accessioned | 2022-12-22T15:58:47Z | |
dc.date.available | 2022-12-22T15:58:47Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Brzostowski Sz., Krasiński T., Oleksik G., Zariski multiplicity conjecture in families of non-degenerate singularities, [in:] Analitic and Algebraic Geometry 4, T. Krasiński, S. Spodzieja (ed.), WUŁ, Łódź 2022, https://doi.org/10.18778/8331-092-3.04 | pl_PL |
dc.identifier.isbn | 978-83-8331-092-3 | |
dc.identifier.uri | http://hdl.handle.net/11089/44821 | |
dc.description.abstract | Podajemy nowy, elementarny dowód hipotezy o krotności Zariskiego
w μ-constant rodzinach niezdegenerowanych osobliwości. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl_PL |
dc.relation.ispartof | Analitic and Algebraic Geometry 4; | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.title | Zariski multiplicity conjecture in families of non-degenerate singularities | pl_PL |
dc.type | Book chapter | pl_PL |
dc.page.number | 53-60 | pl_PL |
dc.contributor.authorAffiliation | Uniwersytet Łódzki, Wydział Matematyki i Informatyki | pl_PL |
dc.contributor.authorAffiliation | Uniwersytet Łódzki, Wydział Matematyki i Informatyki | pl_PL |
dc.contributor.authorAffiliation | Uniwersytet Łódzki, Wydział Matematyki i Informatyki | pl_PL |
dc.identifier.eisbn | 978-83-8331-093-0 | |
dc.references | Y. O. M. Abderrahmane. On deformation with constant Milnor number and Newton polyhedron. Math. Z. 284 (2016) no. 1–2, 167–174. | pl_PL |
dc.references | Sz. Brzostowski, T. Krasiński, J. Walewska. Arnold’s problem on monotonicity of the Newton number for surface singularities. J. Math. Soc. Japan, 71 (2019), no 4,1257–1268. | pl_PL |
dc.references | J. F. de Bobadilla, T. Pełka. Symplectic monodromy at radius zero and equimultiplicity of μ-constant families. ArXiv e-prints, https://arxiv.org/abs/2204.07007v3, 1–82, 2022. | pl_PL |
dc.references | C. Eyral. Zariski’s multiplicity question—a survey. New Zealand J. Math. 36 (2007), 253–276. | pl_PL |
dc.references | C. Eyral. Topics in equisingularity theory, volume 3 of IMPAN Lecture Notes. Polish Academy of Sciences, Institute of Mathematics, Warsaw, 2016. | pl_PL |
dc.references | J. Gwoździewicz. Note on the Newton number. Univ. Iagel. Acta Math. 46 (2008), 31–33. | pl_PL |
dc.references | A. G. Kouchnirenko. Polyèdres de Newton et nombres de Milnor. Invent. Math., 32 (1976), no. 1, 1–31. | pl_PL |
dc.references | M. Leyton-Álvarez, H. Mourtada, M. Spivakovsky. Newton non-degenerate μ-constant deformations admit simultaneous embedded resolutions. ArXiv e-prints, https://arxiv. org/abs/2001.10316v4, 1–31, 2021. | pl_PL |
dc.references | D. T. Lê, C. P. Ramanujam. The invariance of Milnor’s number implies the invariance of the topological type. Amer. J. Math., 98 (1976) , no. 1, 67–78. | pl_PL |
dc.references | B. Teissier. Variétés polaires. I. Invariants polaires des singularités d’hypersurfaces. Invent. Math. 40 (1977), no. 3, 267–292. | pl_PL |
dc.references | O. Zariski. Some open questions in the theory of singularities. Bull. Amer. Math. Soc., 77 (1971), 481–491. | pl_PL |
dc.contributor.authorEmail | szymon.brzostowski@wmii.uni.lodz.pl | pl_PL |
dc.contributor.authorEmail | tadeusz.krasinski@wmii.uni.lodz.pl | pl_PL |
dc.contributor.authorEmail | grzegorz.oleksik@wmii.uni.lodz.pl | pl_PL |
dc.identifier.doi | 10.18778/8331-092-3.04 | |