dc.contributor.author | Oleksik, Grzegorz | |
dc.contributor.author | Różycki, Adam | |
dc.contributor.editor | Krasiński, Tadeusz | |
dc.contributor.editor | Spodzieja, Stanisław | |
dc.date.accessioned | 2022-12-22T15:43:57Z | |
dc.date.available | 2022-12-22T15:43:57Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Oleksik G., Różycki A., Some notes on the Lê numbers in the family of line singularities, [in:] Analitic and Algebraic Geometry 4, T. Krasiński, S. Spodzieja (ed.), WUŁ, Łódź 2022, https://doi.org/10.18778/8331-092-3.11 | pl_PL |
dc.identifier.isbn | 978-83-8331-092-3 | |
dc.identifier.uri | http://hdl.handle.net/11089/44818 | |
dc.description.abstract | W pracy wprowadzamy skoki liczb Le nieizolowanych osobliwości hiperpowierzchni w rodzinie deformacji o jednowymiarowym, gładkim zbiorze punktów krytycznych. Co więcej, udowadniamy istnienie deformacji takiej, że pierwsza liczba Le jest stała a zerowa liczba Le spada do zera. Podajemy również oszacowania liczb Le, gdy zbiór punktów krytycznych jest jednowymiarową krzywą, niekoniecznie gładką. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl_PL |
dc.relation.ispartof | Analitic and Algebraic Geometry 4; | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Jump of Le numbers | pl_PL |
dc.subject | Newton diagram | pl_PL |
dc.subject | Iomdine-Le-Massey formula | pl_PL |
dc.title | Some notes on the Lê numbers in the family of line singularities | pl_PL |
dc.type | Book chapter | pl_PL |
dc.page.number | 137-146 | pl_PL |
dc.contributor.authorAffiliation | Uniwersytet Łódzki, Wydział Matematyki i Informatyki | pl_PL |
dc.contributor.authorAffiliation | Uniwersytet Łódzki, Wydział Matematyki i Informatyki | pl_PL |
dc.identifier.eisbn | 978-83-8331-093-0 | |
dc.references | A. Bodin, Jump of Milnor numbers. Bull. Braz. Math. Soc. (N.S.) 38 (2007), 389–396. | pl_PL |
dc.references | Sz. Brzostowski, T. Krasi´nski, The jump of the Milnor number in the X9 singularity class. Cent. Eur. J. Math. 12 (2014), 429–435. | pl_PL |
dc.references | C. Eyral, Uniform stable radius, Lˆe numbers and topological triviality for line singularities. Pacific J. Math. 291 (2017), no. 2, 359–367. | pl_PL |
dc.references | C. Eyral, G. Oleksik, A. R´o˙zycki, Lˆe numbers and Newton diagram. Adv. Math. 376 (2021), Paper No. 107441, 21 pp. | pl_PL |
dc.references | J. Fern´andez de Bobadilla, Topological equisingularity of hypersurfaces with 1-dimensional critical set. Adv. Math. 248 (2013), 1199–1253. | pl_PL |
dc.references | S. M. Guse˘ın-Zade, On singularities from which an A1 can be split off. Funktcional. Anal.iPrilozhen. 27 (1993), 68–71. | pl_PL |
dc.references | T. Krasi´nski, J. Walewska, Jumps of Milnor numbers of Brieskorn-Pham singularities in non-degenerate families. Results Math. 73 (2018), no. 3, Art. 94, 13 pp. | pl_PL |
dc.references | T. Krasi´nski, J. Walewska, Non-degenerate jumps of Milnor numbers of quasihomogeneous singularities. Ann. Polon. Math. 123 (2019), no. 1, 369–386. | pl_PL |
dc.references | A. G. Kouchnirenko, Poly`edres de Newton et nombres de Milnor. Invent. Math. 32 (1976), no. 1, 1–31. | pl_PL |
dc.references | Lˆe D˜ung Tr´ang, Ensembles analytiques complexes avec lieu singulier de dimension un (d’apr`es I. N. Iomdine). (French) [Complex analytic sets with one-dimensional singular locus (following Y. N. Yomdin)] Seminar on Singularities (Paris, 1976/1977), pp. 87–95, Publ. Math. Univ. Paris VII, 7, Univ. Paris VII, Paris, 1980. | pl_PL |
dc.references | D. B. Massey, The Lˆe-Ramanujam problem for hypersurfaces with one-dimensional singular sets. Math. Ann. 282 (1988), no. 1, 33–49. | pl_PL |
dc.references | D. B. Massey, A reduction theorem for the Zariski multiplicity conjecture. Proc. Amer. Math. Soc. 106 (1989), no. 2, 379–383. | pl_PL |
dc.references | D. B. Massey, The Lˆe varieties. I. Invent. Math. 99 (1990), no. 2, 357–376. | pl_PL |
dc.references | D. B. Massey, The Lˆe varieties. II. Invent. Math. 104 (1991), no. 1, 113–148. | pl_PL |
dc.references | D. B. Massey, Lˆe cycles and hypersurface singularities. Lecture Notes Math. 1615, Springer- Verlag, Berlin, 1995. | pl_PL |
dc.references | M. Oka, On the bifurcation of the multiplicity and topology of the Newton boundary. J. Math. Soc. Japan 31 (1979), 43–450. | pl_PL |
dc.references | J. Walewska, The second jump of Milnor numbers. Demonstr. Math. 43 (2010), 361–374. | pl_PL |
dc.contributor.authorEmail | grzegorz.oleksik@wmii.uni.lodz.pl | pl_PL |
dc.contributor.authorEmail | adam.rozycki@wmii.uni.lodz.pl | pl_PL |
dc.identifier.doi | 10.18778/8331-092-3.11 | |