Show simple item record

dc.contributor.authorRossa, Agnieszka
dc.contributor.authorSocha, Lesław
dc.contributor.authorSzymański, Andrzej
dc.date.accessioned2022-07-26T15:32:41Z
dc.date.available2022-07-26T15:32:41Z
dc.date.issued2015
dc.identifier.citationRossa A., Socha L., Szymański A., Hybrydowe modelowanie procesów demograficznych z wykorzystaniem rozmytych przełączających układów dynamicznych, Wydawnictwo Uniwersytetu Łódzkiego, Łódź 2016, https://doi.org/10.18778/8088-041-2pl_PL
dc.identifier.isbn978-83-8088-041-2
dc.identifier.urihttp://hdl.handle.net/11089/42573
dc.descriptionW książce zaprezentowane są nowe modele umieralności, które umożliwiają prognozowanie procesu wymierania populacji w perspektywie średnio- i długookresowej. Autorzy omawiają kolejne modyfikacje modelu Lee-Cartera, wykorzystując teorię równań różniczkowych, algebry liczb rozmytych oraz algebry liczb zespolonych. Zastosowanie tych struktur pozwala na modelowanie umieralności, a następnie na wskazanie własności prognostycznych poszczególnych modeli. W sytuacji starzenia się społeczeństw w krajach rozwiniętych proponowane modele mogą znaleźć zastosowanie m.in. w planach emerytalnych i ubezpieczeniach na życie.pl_PL
dc.description.sponsorshipUdostępnienie publikacji Wydawnictwa Uniwersytetu Łódzkiego finansowane w ramach projektu „Doskonałość naukowa kluczem do doskonałości kształcenia”. Projekt realizowany jest ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Wiedza Edukacja Rozwój; nr umowy: POWER.03.05.00-00-Z092/17-00.pl_PL
dc.language.isoplpl_PL
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl_PL
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectliczby zespolonepl_PL
dc.subjectliczby rozmytepl_PL
dc.subjectmodele umieralnościpl_PL
dc.subjectstatyczne i dynamiczne modele hybrydowepl_PL
dc.subjectalgebra Banachapl_PL
dc.titleHybrydowe modelowanie procesów demograficznych z wykorzystaniem rozmytych przełączających układów dynamicznychpl_PL
dc.typeBookpl_PL
dc.rights.holder© Copyright by Authors, Łódź 2015; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2015pl_PL
dc.page.number236pl_PL
dc.contributor.authorAffiliationUniwersytet Łódzki, Wydział Ekonomiczno-Socjologiczny, Zakład Demografii i Gerontologii Społecznej, 90-214 Łódź, ul. Rewolucji 1095 r. nr 41/43pl_PL
dc.contributor.authorAffiliationUniwersytet Kardynała Stefana Wyszyńskiego, Wydział Matematyczno-Przyrodniczy – Szkoła Nauk Ścisłych, Instytut Informatyki, 01-938 Warszawa, ul. Wóycickiego 1/3pl_PL
dc.contributor.authorAffiliationUniwersytet Łódzki, Wydział Ekonomiczno-Socjologiczny, Zakład Demografii i Gerontologii Społecznej, 90-214 Łódź, ul. Rewolucji 1095 r. nr 41/43pl_PL
dc.identifier.eisbn978-83-8088-042-9
dc.referencesAalen O. O., (1978), Nonparametric Inference for a Family of Counting Processes, Annals of Statistics, 6, 701-726.pl_PL
dc.referencesAkushevich I., Akushevich L., Manton K., Yashin A., (2003), Stochastic process model of mortality and aging: Application to longitudinal data, Nonlinear Phenomena in Complex Systems, 6, 515-523.pl_PL
dc.referencesAlexiewicz A., (1969), Analiza funkcjonalna, PWN, Warszawa.pl_PL
dc.referencesAntoch J., Huškova M., Janic A., Ledwina T., (2008), Data driven rank test for the change point problem, Metrika, Vol. 68 (1), 1-15.pl_PL
dc.referencesArnold B. C., (1983), Pareto Distributions, International Cooperative Publishing House, Fairland, Maryland.pl_PL
dc.referencesArnold B. C., Press S. J., (1989), Bayesian Estimation and Prediction for Pareto Data, Journal of the American Statistical Association, 84, 1079-1084.pl_PL
dc.referencesBain L. J., (1974), Analysis for the Linear Failure-Rate Life-Testing Distribution, Technometrics, 4, 551-559.pl_PL
dc.referencesBargiela A., Pedrycz W., Nakashima T., (2007), Multiple regression with fuzzy data, Fuzzy Sets and Systems, 158, 2169-2188.pl_PL
dc.referencesBayraktar E., Milevsky M. A., Promislow S. D., Young V. R., (2009),Valuation of mortality risk via the instantaneous Sharpe ratio: Applications to life annuities, Journal of Economics Dynamics and Control, 33, 676-691.pl_PL
dc.referencesBennett S., (1983), Log-Logistic Regression Models for Survival Data, Applied Statistics, 32, 165-171.pl_PL
dc.referencesBiffis E., (2005), A fine processes for dynamic mortality and actuarial valuations, Insurance: Mathematics and Economics, 37, 443-468.pl_PL
dc.referencesBiffis E., Denuit M., (2006), Lee-Carter goes risk-neutral. An application to the Italian annuity market, Giornalle dell'Instituton Italiano degli Attuari, LXIX, 1-21.pl_PL
dc.referencesBiffis E., Denuit M., Devolder P., (2010), Stochastic mortality under measure changes, Scandinavian Actuarial Journal, 4, 284-311.pl_PL
dc.referencesBooth H., (2006), Demographic forecasting: 1980 to 2005 in review, International Journal of Forecasting, 22, 547-581.pl_PL
dc.referencesBoukas E. K., (2005), Stochastic Hybrid Systems: Analysis and Design, Birkhauser, Boston.pl_PL
dc.referencesBravo J. M., (2009), Modelling mortality using multiple stochastic latent factors, Proceedings of 7th International Workshop on Pension, Insurance and Saving, Paris, May 28-29, 1-15.pl_PL
dc.referencesBravo J. M., Braumann C. A., (2007), The value of a random life: modelling survival probabilities in a stochastic environment, Bulletin the the International Statistical Institute, LXII.pl_PL
dc.referencesBrazauskas V., Sering R., (2000), Robust and Efficient Estimation of the Tail Index of a Single Parameter Pareto Distribution, North American Actuarial Journal, 4, 12-27.pl_PL
dc.referencesBrazauskas V., Sering R., (2001), Small Sample Performance of Robust Estimators of Tail Parameters For Pareto and Exponential Models, Journal of Statistical Computation and Simulation, 70, 1-19.pl_PL
dc.referencesBrouhns N., Denuit M., Vermunt J. K., (2002), A Poisson log-bilinear regression approach to the construction of projected lifetables, Insurance: Mathematics and Economics, 31, 373-393.pl_PL
dc.referencesCairns A. J. G., Blake D., Dowd K., (2008), Modelling and management of mortality risk: a review, Scandinavian Actuarial Journal, 2-3, 79-113.pl_PL
dc.referencesCairns A. J. G., Blake D., Dowd K., Coughlan G. D., Epstein D., Ong A., Balevich I., (2007), A quantitative comparison of stochastic mortality models using data from England & Wales and the United States, Discussion Paper PI-0107, The Pensions Institute, Cass Business School City University.pl_PL
dc.referencesCairns A. J. G., Blake D., Dowd K., Coughlan G. D., Epstein D., Ong A., Balevich I., (2009), A quantitative comparison of stochastic mortality models using data from England and Wales and the United States, North American Actuarial Journal, 13, 1-35.pl_PL
dc.referencesCairns A. J. G., Blake D., Dowd K., Coughlan G. D., Epstein D., (2011), Mortality density forecasts: An analysis of six stochastic mortality models, Insurance: Mathematics and Economics, 48, 355-367.pl_PL
dc.referencesChiang C. L., (1968), Introduction to Stochastic Processes in Biostatistics, John Wiley, New York.pl_PL
dc.referencesCoelho E., Magalhaes M. G., Bravo J. M., (2010), Mortality projections in Portugal, Proceeding of the Conference of European Statisticians, Working Session on Demographic Projections, Lisbon, Portugal, EUROSTAT (Series Forecasting demographic components: mortality, April 28-30, 1-11.pl_PL
dc.referencesCox D. R., (1972), Regression Models and Life-Tables, Journal of the Royal Statistical Society, Ser. B, 34, 187-220.pl_PL
dc.referencesCox D. R., (1975), Partial Likelihood, Biometrika, 62, 269-276.pl_PL
dc.referencesCox J. C., Ingersoll J. E., Ross S. A., (1985), A theory of the term structure of interest rates, Econometrica, 53, 385-407.pl_PL
dc.referencesDahl M., (2004), Stochastic mortality in life insurance: market reserves and mortality-linked insurance contracts, Insurance: Mathematics and Economics, 35, 113-136.pl_PL
dc.referencesDebon A., Montes F., Puig F., (2008), Modelling and forecasting mortality in Spain, European Journal of Operational Research, 189, 624-637.pl_PL
dc.referencesDiamond P., (1988), Fuzzy least-squares, Information Sciences, 46(3), 141-157.pl_PL
dc.referencesDiCiccio T., (1987), Approximate Inference for the Generalized Gamma Distribution, Technometrics, 29, 33-40.pl_PL
dc.referencesDubois D., Prade H., (1980), Fuzzy Sets and Systems: Theory and Applications, Academic Press, New York, London, Toronto, Sydney, San Francisco.pl_PL
dc.referencesFeigl P., Zelen M., (1965), Estimation of the Exponential Survival Probabilities with Concomitant Information, Biometrics, 21, 826-838.pl_PL
dc.referencesFrątczak E., (1997), Analiza historii zdarzeń - elementy teorii, wybrane przykłady zastosowań z wykorzystaniem pakietu TDA, Szkoła Główna Handlowa, Warszawa.pl_PL
dc.referencesGiacometti R., Ortobelli S., Bertocchi M., (2011), A stochastic model for mortality rate on Italian Data, Journal of Optimization Theory and Applications, 149, 216-228.pl_PL
dc.referencesGirosi F., King G., (2008), Demographic Forecasting, Princeton University Press, Princeton and Oxford.pl_PL
dc.referencesGlasser M., (1967), Exponential Survival with Covariance, Journal of the American Statistical Association, 62, 501-568.pl_PL
dc.referencesGompertz B., (1825), On the nature of the function expressive of the law of human mortality and on a new mode of determining life contingencies, Philosophical Transactions of the Royal Society of London, Ser. A, CXV, 513-580.pl_PL
dc.referencesHaberman S., Renshaw A., (2008), Mortality, longevity and experiments with the Lee-Carter model, Lifetime Data Analysis, 14, 286-315.pl_PL
dc.referencesHaberman S., Renshaw A., (2009), On age-period-cohort parametric mortality rate projections, Insurance: Mathematics and Economics, 45, 255-270.pl_PL
dc.referencesHaberman S., Renshaw A., (2011), A comparative study of parametric mortality projection models, Insurance: Mathematics and Economics, 48, 3-55.pl_PL
dc.referencesHainaut D., (2012), Multi dimensions Lee-Carter model with switching mortality processes, Insurance: Mathematics and Economics, 47, 409-418.pl_PL
dc.referencesHainaut D., Devolder P., (2008), Mortality modelling with Levy processes, Insurance: Mathematics and Economics, 42, 409-418.pl_PL
dc.referencesHarter H. L., (1967), Maximum Likelihood Estimation of the Parameters of a Four-Parameter Generalized Gamma Population from Complete and Censored Samples, Technometrics, 9, 159-165.pl_PL
dc.referencesHatzopoulos P., Haberman S., (2011), A dynamic parametrization modeling for the age-period-cohort mortality, Insurance: Mathematics and Economics, 49, 155-174.pl_PL
dc.referencesHeligman L., Pollard J. H., (1980), The age pattern of mortality, Journal of the Institute of Actuaries, 107, 49-80.pl_PL
dc.referencesHjorth U., (1980), A Reliability Distribution with Increasing, Decreasing, Constant and Bathtub-Shaped Failure Rates, Technometrics, 22, 99-107.pl_PL
dc.referencesHong H. D., (2001), Shape preserving multiplications of fuzzy numbers, Fuzzy Sets and Systems, 123, 81-84.pl_PL
dc.referencesHong H. D., Song J. K., Do H. Y., (2001), Fuzzy least-squares regression analysis using shape preserving operations, Information Sciences, 138, 185-193.pl_PL
dc.referencesHuffer F. W., McKeague I. W., (1991), Weighted Least Squares Estimation for Aalen's Additive Risk Model, Journal of the American Statistical Association, 86, 114-129.pl_PL
dc.referencesJanic-Wróblewska A., Ledwina T., (2000), Data driven rank test for two-sample problem, Scandinavian Journal of Statistics, 27, 281-297.pl_PL
dc.referencesJanssen J., Skiadas C. H., (1995), Dynamic modelling of life table data, Applied Stochastic Models and Data Analysis, 11, 35-49.pl_PL
dc.referencesKaplan E. L., Meier P., (1958), Nonparametric Estimation from Incomplete Observations, Journal of the American Statistical Association, 53, 457-481.pl_PL
dc.referencesKazakow I. E., Artemiev B. M., (1980), Optimization of Dynamic Systems with Random Structure, Nauka, Moscow (w j. rosyjskim).pl_PL
dc.referencesKędelski M., Paradysz J., (2006), Demografia, Wyd. AE, Poznań.pl_PL
dc.referencesKodlin D., (1967), A New Response Time Distribution, Biometrics, 2, 227-239.pl_PL
dc.referencesKoissi M. C., Shapiro A. F., (2006), Fuzzy formulation of the Lee-Carter model for mortality forecasting, Insurance: Mathematics and Economics, 39, 287-309.pl_PL
dc.referencesKołodziej W., (1970), Wybrane rozdziały analizy matematycznej, Biblioteka Matematyczna, t. 36, PWN, Warszawa.pl_PL
dc.referencesKosiński W., Prokopowicz P., (2004), Algebra liczb rozmytych, Matematyka Stosowana, 46, 37-63.pl_PL
dc.referencesKosiński W., Prokopowicz P., Ślęzak D., (2003), Ordered fuzzy numbers, Bulletin of the Polish Academy of Sciences - Mathematics, 51, 327-338.pl_PL
dc.referencesKrane S. A., (1963), Analysis of Survival Data by Regression Techniques, Technometrics, 5, 161-174.pl_PL
dc.referencesLadde G. S., Wu L., (2009), Development of modified Geometric Brownian Motion model by using stock price data and basic statistics, Nonlinear Analysis, 71, 1203-1208.pl_PL
dc.referencesLee R. D., Carter L., (1992), Modeling and forecasting the time series of U.S. mortality, Journal of the American Statistical Association, 87, 659-671.pl_PL
dc.referencesLee R. D., Miller T., (2001), Evaluating the performance of the Lee-Carter method for forecasting mortality, Demography, 38, 537-549.pl_PL
dc.referencesLin D. Y., (1991), Goodness-of-Fit Analysis for the Cox Regression Model Based On a Class of Parameter Estimators, Journal of the American Statistical Association, 86, 725-728.pl_PL
dc.referencesLipcer R., Sziriajew A., (1981), Statystyka procesów stochastycznych, PWN, Warszawa.pl_PL
dc.referencesLuciano E., Spreeuw J., Vigna E., (2008), Modelling stochastic mortality for dependents lives, Insurance: Mathematics and Economics, 43, 234-244.pl_PL
dc.referencesMalik H. J., (1970), Estimation of the Parameters of the Pareto Distribution, Metrika, 15, 126-132.pl_PL
dc.referencesMalinowski M. T., (2012), Strong solutions to stochastic fuzzy differential equations of Itô type, Mathematics and Computer Modelling, 55, 918-928.pl_PL
dc.referencesMaurin K., (1971), Analiza, cz. I, Elementy, PWN, Warszawa.pl_PL
dc.referencesMilevsky M. A., Promislow S. D., (2001), Mortality derivatives and the option annuities, Insurance: Mathematics and Economics, 29, 299-318.pl_PL
dc.referencesMlak W., (1970), Wstęp do teorii przestrzeni Hilberta, PWN, Warszawa.pl_PL
dc.referencesNelson W., (1969), Hazard Plotting for Incomplete Failure Data, Journal of Quality Technology, 1, 27-52.pl_PL
dc.referencesNielsen B., Nielsen J. P., (2010), Identification and Forecasting in the Lee-Carter Model, Economics Series Working Papers No 2010-W07, University of Oxford, Department of Economics, dost , ep on-line pod adresem nuffield.ox.ac.uk/economics/papers/2010/w7/NielsenNielsenNew2010.pdfpl_PL
dc.referencesOkólski M. (red.), (1990), Determinanty umieralności w świetle teorii i badań empirycznych, Wyd. SGPiS, Warszawa.pl_PL
dc.referencesOkólski M., (2003), Kryzys zdrowotny w Polsce, Polityka Społeczna, nr 1.pl_PL
dc.referencesOstasiewicz S., (2011), Aproksymacja czasu trwania życia w populacjach niejednorodnych, Zeszyty Naukowe WSOWL, 4 (162), 342-358.pl_PL
dc.referencesPettitt A. N., (1984), Proportional Odds Model for Survival Data and Estimates Using Ranks, Applied Statistics, 33, 169-175.pl_PL
dc.referencesPitacco E., (2004), Survival models in a dynamic context: a survey, Insurance: Mathematics and Economics, 35, 279-298.pl_PL
dc.referencesPlat R., (2009), On stochastic mortality modeling, Insurance: Mathematics and Economics, 45, 393-404.pl_PL
dc.referencesPolovko A. M., (1968), Fundamentals of Reliability Theory, Academic Press, New York.pl_PL
dc.referencesPrentice R. L., (1974), A Log-Gamma Model and Its Maximum Likelihood Estimation, Biometrika, 61, 539-544.pl_PL
dc.referencesPreston S. H., Heuveline P., Guillot M., (2001), Demography. Measuring and Modeling Population Processes, Blackwell Publishing Ltd., Malden-Oxford-Carlton.pl_PL
dc.referencesProschan F., (1963), Theoretical Explanation of Observed Decresing Failure Rate, Technometrics, 5, 375-385.pl_PL
dc.referencesQuandt R. E., (1966), Old and New Methods of Estimation and the Pareto Distribution, Metrika, 10, 55-82.pl_PL
dc.referencesRenshaw A., Haberman S., (2003), Lee-Carter mortality forecasting with age-specific enhancement, Insurance: Mathematics and Economics, 33, 255-272.pl_PL
dc.referencesRenshaw A., Haberman S., (2003), On the forecasting of mortality reduction factors, Insurance: Mathematics and Economics, 32, 379-401.pl_PL
dc.referencesRenshaw A., Haberman S., (2006), A cohort-based extension to the Lee-Carter model for mortality reduction factor, Insurance: Mathematics and Economics, 38, 556-570.pl_PL
dc.referencesRossa A. (red.), (2011), Analiza i modelowanie umieralności w ujęciu dynamicznym, Wyd. UŁ, Łódź.pl_PL
dc.referencesRossa A., Socha L., (2013), Proposition of Hybrid Stochastic Lee-Carter Mortality Model, Advances in Methodology and Statistics, 10(1), 1-16.pl_PL
dc.referencesRosset E., (1979), Trwanie życia ludzkiego, PWN, Warszawa.pl_PL
dc.referencesRusso V., Giacometti R., Ortobelli S., Rachev S., Fabozzi F. J., (2011), Calibrating affine stochastic mortality models using term assurance premiums, Insurance: Mathematics and Economics, 49, 53-60.pl_PL
dc.referencesSakai S., (1971), C*-algebras and W*-algebras, Springer Verlag, Berlin-Heidelberg-New York.pl_PL
dc.referencesSchrager D., (2006), Affine stochastic mortality, Insurance: Mathematics and Economics, 38, 81-97.pl_PL
dc.referencesSierpiński W., (1968), Arytmetyka teoretyczna, PWN, Warszawa.pl_PL
dc.referencesSobczyk K., (1996), Stochastyczne równania różniczkowe, WNT, Warszawa.pl_PL
dc.referencesSocha L., (1993), Równania momentów w stochastycznych układach dynamicznych, PWN, Warszawa.pl_PL
dc.referencesSocha L., (2008), Linearization Methods for Stochastic Dynamic Systems, Springer, Berlin.pl_PL
dc.referencesStacy E. W., (1962), A Generalization of the Gamma Distribution, The Annals of Mathematical Statistics, 33, 1187-1192.pl_PL
dc.referencesStacy E. W., Mihram G. A., (1965), Parameter Estimation for a Generalized Gamma Distribution, Technometrics, 7, 349-358.pl_PL
dc.referencesStratonovich R., (1960), A new form of representation of stochastic integral and equations, SIAM Journal on Control and Optimization, 4, 362-371.pl_PL
dc.referencesSzymański A., Rossa A. (2014), Fuzzy mortality model based on Banach algebra, International Journal of Intelligent Technologies and Applied Statistics, 7(3), 241-265.pl_PL
dc.referencesTabeau E., Berg Jehs A., Heathcote Ch. (red.), (2001), Forecasting Mortality in Developed Countries. Insights from Statistical, Demographic and Epidemiological Perspective, Kluwer Academic Publishers, London.pl_PL
dc.referencesThiele T. N., (1872), On a mathematical formula to express the rate of mortality throughout life, Journal of the Institute of Actuaries, 16, 313-329.pl_PL
dc.referencesWachter K. W., (2006), Essential Demographic Methods, University of California Press, Berkeley.pl_PL
dc.referencesWeibull W., (1939), Statistical Theory of the Strength of Materials, Ingenioor Vetenskps Akademiens Handlingar, 151, 1-45.pl_PL
dc.referencesWilmoth J. R., Horiuchi S., (1999), Rectangularization revised: variability of age at death within human populations, Demography, 36 (4), 475-495.pl_PL
dc.referencesWong E., (1971), Stochastic Processes in Information Theory and Dynamical Systems, McGraw-Hill, New York.pl_PL
dc.referencesWu S. J., (2003), Estimation for the Two-Parameter Pareto Distribution under Progressive Censoring with Uniform Removals, Journal of Statistical Computation and Simulation, 73, 125-134.pl_PL
dc.referencesVasiĉek O., (1977), An equilibrium characterization of the term structure, Journal of Financial Economics, 5, 177-188.pl_PL
dc.referencesYin G., Zhang Q., Yang H., Yin K., (2002), A class of hybrid market models: simulation, identification and estimation, Proceedings of the American Control Conference, Anchorage, May 8-10, 2571-2576.pl_PL
dc.referencesYin G., Zhang Q., Yang H., Yin K., (2003), Constrained stochastic estimation algorithms for a class of hybrid stock market models, Journal of Optimization Theory and Applications, 118, 157-182.pl_PL
dc.referencesZadeh L., (1965), Fuzzy Sets, Information and Control, 8, 338-353.pl_PL
dc.referencesZippin C., Armitage P., (1966), Use of Concomitant Variables and Incomplete Survival Information in the Estimation of an Exponential Survival Parameter, Biometrics, 22, 665-672.pl_PL
dc.referencesŻelazko W., (1968), Algebry Banacha, Biblioteka Matematyczna, t. 32, PWN, Warszawa.pl_PL
dc.identifier.doi10.18778/8088-041-2
dc.disciplinenauki socjologicznepl_PL
dc.disciplinematematykapl_PL


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe