dc.contributor.author | Rossa, Agnieszka | |
dc.contributor.author | Socha, Lesław | |
dc.contributor.author | Szymański, Andrzej | |
dc.date.accessioned | 2022-07-26T15:32:41Z | |
dc.date.available | 2022-07-26T15:32:41Z | |
dc.date.issued | 2015 | |
dc.identifier.citation | Rossa A., Socha L., Szymański A., Hybrydowe modelowanie procesów demograficznych z wykorzystaniem rozmytych przełączających układów dynamicznych, Wydawnictwo Uniwersytetu Łódzkiego, Łódź 2016, https://doi.org/10.18778/8088-041-2 | pl_PL |
dc.identifier.isbn | 978-83-8088-041-2 | |
dc.identifier.uri | http://hdl.handle.net/11089/42573 | |
dc.description | W książce zaprezentowane są nowe modele umieralności, które umożliwiają prognozowanie procesu wymierania populacji w perspektywie średnio- i długookresowej. Autorzy omawiają kolejne modyfikacje modelu Lee-Cartera, wykorzystując teorię równań różniczkowych, algebry liczb rozmytych oraz algebry liczb zespolonych. Zastosowanie tych struktur pozwala na modelowanie umieralności, a następnie na wskazanie własności prognostycznych poszczególnych modeli. W sytuacji starzenia się społeczeństw w krajach rozwiniętych proponowane modele mogą znaleźć zastosowanie m.in. w planach emerytalnych i ubezpieczeniach na życie. | pl_PL |
dc.description.sponsorship | Udostępnienie publikacji Wydawnictwa Uniwersytetu Łódzkiego finansowane w ramach projektu „Doskonałość naukowa kluczem do doskonałości kształcenia”. Projekt realizowany jest ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Wiedza Edukacja Rozwój; nr umowy: POWER.03.05.00-00-Z092/17-00. | pl_PL |
dc.language.iso | pl | pl_PL |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl_PL |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | liczby zespolone | pl_PL |
dc.subject | liczby rozmyte | pl_PL |
dc.subject | modele umieralności | pl_PL |
dc.subject | statyczne i dynamiczne modele hybrydowe | pl_PL |
dc.subject | algebra Banacha | pl_PL |
dc.title | Hybrydowe modelowanie procesów demograficznych z wykorzystaniem rozmytych przełączających układów dynamicznych | pl_PL |
dc.type | Book | pl_PL |
dc.rights.holder | © Copyright by Authors, Łódź 2015; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2015 | pl_PL |
dc.page.number | 236 | pl_PL |
dc.contributor.authorAffiliation | Uniwersytet Łódzki, Wydział Ekonomiczno-Socjologiczny, Zakład Demografii i Gerontologii Społecznej, 90-214 Łódź, ul. Rewolucji 1095 r. nr 41/43 | pl_PL |
dc.contributor.authorAffiliation | Uniwersytet Kardynała Stefana Wyszyńskiego, Wydział Matematyczno-Przyrodniczy – Szkoła Nauk Ścisłych, Instytut Informatyki, 01-938 Warszawa, ul. Wóycickiego 1/3 | pl_PL |
dc.contributor.authorAffiliation | Uniwersytet Łódzki, Wydział Ekonomiczno-Socjologiczny, Zakład Demografii i Gerontologii Społecznej, 90-214 Łódź, ul. Rewolucji 1095 r. nr 41/43 | pl_PL |
dc.identifier.eisbn | 978-83-8088-042-9 | |
dc.references | Aalen O. O., (1978), Nonparametric Inference for a Family of Counting Processes, Annals of Statistics, 6, 701-726. | pl_PL |
dc.references | Akushevich I., Akushevich L., Manton K., Yashin A., (2003), Stochastic process model of mortality and aging: Application to longitudinal data, Nonlinear Phenomena in Complex Systems, 6, 515-523. | pl_PL |
dc.references | Alexiewicz A., (1969), Analiza funkcjonalna, PWN, Warszawa. | pl_PL |
dc.references | Antoch J., Huškova M., Janic A., Ledwina T., (2008), Data driven rank test for the change point problem, Metrika, Vol. 68 (1), 1-15. | pl_PL |
dc.references | Arnold B. C., (1983), Pareto Distributions, International Cooperative Publishing House, Fairland, Maryland. | pl_PL |
dc.references | Arnold B. C., Press S. J., (1989), Bayesian Estimation and Prediction for Pareto Data, Journal of the American Statistical Association, 84, 1079-1084. | pl_PL |
dc.references | Bain L. J., (1974), Analysis for the Linear Failure-Rate Life-Testing Distribution, Technometrics, 4, 551-559. | pl_PL |
dc.references | Bargiela A., Pedrycz W., Nakashima T., (2007), Multiple regression with fuzzy data, Fuzzy Sets and Systems, 158, 2169-2188. | pl_PL |
dc.references | Bayraktar E., Milevsky M. A., Promislow S. D., Young V. R., (2009),Valuation of mortality risk via the instantaneous Sharpe ratio: Applications to life annuities, Journal of Economics Dynamics and Control, 33, 676-691. | pl_PL |
dc.references | Bennett S., (1983), Log-Logistic Regression Models for Survival Data, Applied Statistics, 32, 165-171. | pl_PL |
dc.references | Biffis E., (2005), A fine processes for dynamic mortality and actuarial valuations, Insurance: Mathematics and Economics, 37, 443-468. | pl_PL |
dc.references | Biffis E., Denuit M., (2006), Lee-Carter goes risk-neutral. An application to the Italian annuity market, Giornalle dell'Instituton Italiano degli Attuari, LXIX, 1-21. | pl_PL |
dc.references | Biffis E., Denuit M., Devolder P., (2010), Stochastic mortality under measure changes, Scandinavian Actuarial Journal, 4, 284-311. | pl_PL |
dc.references | Booth H., (2006), Demographic forecasting: 1980 to 2005 in review, International Journal of Forecasting, 22, 547-581. | pl_PL |
dc.references | Boukas E. K., (2005), Stochastic Hybrid Systems: Analysis and Design, Birkhauser, Boston. | pl_PL |
dc.references | Bravo J. M., (2009), Modelling mortality using multiple stochastic latent factors, Proceedings of 7th International Workshop on Pension, Insurance and Saving, Paris, May 28-29, 1-15. | pl_PL |
dc.references | Bravo J. M., Braumann C. A., (2007), The value of a random life: modelling survival probabilities in a stochastic environment, Bulletin the the International Statistical Institute, LXII. | pl_PL |
dc.references | Brazauskas V., Sering R., (2000), Robust and Efficient Estimation of the Tail Index of a Single Parameter Pareto Distribution, North American Actuarial Journal, 4, 12-27. | pl_PL |
dc.references | Brazauskas V., Sering R., (2001), Small Sample Performance of Robust Estimators of Tail Parameters For Pareto and Exponential Models, Journal of Statistical Computation and Simulation, 70, 1-19. | pl_PL |
dc.references | Brouhns N., Denuit M., Vermunt J. K., (2002), A Poisson log-bilinear regression approach to the construction of projected lifetables, Insurance: Mathematics and Economics, 31, 373-393. | pl_PL |
dc.references | Cairns A. J. G., Blake D., Dowd K., (2008), Modelling and management of mortality risk: a review, Scandinavian Actuarial Journal, 2-3, 79-113. | pl_PL |
dc.references | Cairns A. J. G., Blake D., Dowd K., Coughlan G. D., Epstein D., Ong A., Balevich I., (2007), A quantitative comparison of stochastic mortality models using data from England & Wales and the United States, Discussion Paper PI-0107, The Pensions Institute, Cass Business School City University. | pl_PL |
dc.references | Cairns A. J. G., Blake D., Dowd K., Coughlan G. D., Epstein D., Ong A., Balevich I., (2009), A quantitative comparison of stochastic mortality models using data from England and Wales and the United States, North American Actuarial Journal, 13, 1-35. | pl_PL |
dc.references | Cairns A. J. G., Blake D., Dowd K., Coughlan G. D., Epstein D., (2011), Mortality density forecasts: An analysis of six stochastic mortality models, Insurance: Mathematics and Economics, 48, 355-367. | pl_PL |
dc.references | Chiang C. L., (1968), Introduction to Stochastic Processes in Biostatistics, John Wiley, New York. | pl_PL |
dc.references | Coelho E., Magalhaes M. G., Bravo J. M., (2010), Mortality projections in Portugal, Proceeding of the Conference of European Statisticians, Working Session on Demographic Projections, Lisbon, Portugal, EUROSTAT (Series Forecasting demographic components: mortality, April 28-30, 1-11. | pl_PL |
dc.references | Cox D. R., (1972), Regression Models and Life-Tables, Journal of the Royal Statistical Society, Ser. B, 34, 187-220. | pl_PL |
dc.references | Cox D. R., (1975), Partial Likelihood, Biometrika, 62, 269-276. | pl_PL |
dc.references | Cox J. C., Ingersoll J. E., Ross S. A., (1985), A theory of the term structure of interest rates, Econometrica, 53, 385-407. | pl_PL |
dc.references | Dahl M., (2004), Stochastic mortality in life insurance: market reserves and mortality-linked insurance contracts, Insurance: Mathematics and Economics, 35, 113-136. | pl_PL |
dc.references | Debon A., Montes F., Puig F., (2008), Modelling and forecasting mortality in Spain, European Journal of Operational Research, 189, 624-637. | pl_PL |
dc.references | Diamond P., (1988), Fuzzy least-squares, Information Sciences, 46(3), 141-157. | pl_PL |
dc.references | DiCiccio T., (1987), Approximate Inference for the Generalized Gamma Distribution, Technometrics, 29, 33-40. | pl_PL |
dc.references | Dubois D., Prade H., (1980), Fuzzy Sets and Systems: Theory and Applications, Academic Press, New York, London, Toronto, Sydney, San Francisco. | pl_PL |
dc.references | Feigl P., Zelen M., (1965), Estimation of the Exponential Survival Probabilities with Concomitant Information, Biometrics, 21, 826-838. | pl_PL |
dc.references | Frątczak E., (1997), Analiza historii zdarzeń - elementy teorii, wybrane przykłady zastosowań z wykorzystaniem pakietu TDA, Szkoła Główna Handlowa, Warszawa. | pl_PL |
dc.references | Giacometti R., Ortobelli S., Bertocchi M., (2011), A stochastic model for mortality rate on Italian Data, Journal of Optimization Theory and Applications, 149, 216-228. | pl_PL |
dc.references | Girosi F., King G., (2008), Demographic Forecasting, Princeton University Press, Princeton and Oxford. | pl_PL |
dc.references | Glasser M., (1967), Exponential Survival with Covariance, Journal of the American Statistical Association, 62, 501-568. | pl_PL |
dc.references | Gompertz B., (1825), On the nature of the function expressive of the law of human mortality and on a new mode of determining life contingencies, Philosophical Transactions of the Royal Society of London, Ser. A, CXV, 513-580. | pl_PL |
dc.references | Haberman S., Renshaw A., (2008), Mortality, longevity and experiments with the Lee-Carter model, Lifetime Data Analysis, 14, 286-315. | pl_PL |
dc.references | Haberman S., Renshaw A., (2009), On age-period-cohort parametric mortality rate projections, Insurance: Mathematics and Economics, 45, 255-270. | pl_PL |
dc.references | Haberman S., Renshaw A., (2011), A comparative study of parametric mortality projection models, Insurance: Mathematics and Economics, 48, 3-55. | pl_PL |
dc.references | Hainaut D., (2012), Multi dimensions Lee-Carter model with switching mortality processes, Insurance: Mathematics and Economics, 47, 409-418. | pl_PL |
dc.references | Hainaut D., Devolder P., (2008), Mortality modelling with Levy processes, Insurance: Mathematics and Economics, 42, 409-418. | pl_PL |
dc.references | Harter H. L., (1967), Maximum Likelihood Estimation of the Parameters of a Four-Parameter Generalized Gamma Population from Complete and Censored Samples, Technometrics, 9, 159-165. | pl_PL |
dc.references | Hatzopoulos P., Haberman S., (2011), A dynamic parametrization modeling for the age-period-cohort mortality, Insurance: Mathematics and Economics, 49, 155-174. | pl_PL |
dc.references | Heligman L., Pollard J. H., (1980), The age pattern of mortality, Journal of the Institute of Actuaries, 107, 49-80. | pl_PL |
dc.references | Hjorth U., (1980), A Reliability Distribution with Increasing, Decreasing, Constant and Bathtub-Shaped Failure Rates, Technometrics, 22, 99-107. | pl_PL |
dc.references | Hong H. D., (2001), Shape preserving multiplications of fuzzy numbers, Fuzzy Sets and Systems, 123, 81-84. | pl_PL |
dc.references | Hong H. D., Song J. K., Do H. Y., (2001), Fuzzy least-squares regression analysis using shape preserving operations, Information Sciences, 138, 185-193. | pl_PL |
dc.references | Huffer F. W., McKeague I. W., (1991), Weighted Least Squares Estimation for Aalen's Additive Risk Model, Journal of the American Statistical Association, 86, 114-129. | pl_PL |
dc.references | Janic-Wróblewska A., Ledwina T., (2000), Data driven rank test for two-sample problem, Scandinavian Journal of Statistics, 27, 281-297. | pl_PL |
dc.references | Janssen J., Skiadas C. H., (1995), Dynamic modelling of life table data, Applied Stochastic Models and Data Analysis, 11, 35-49. | pl_PL |
dc.references | Kaplan E. L., Meier P., (1958), Nonparametric Estimation from Incomplete Observations, Journal of the American Statistical Association, 53, 457-481. | pl_PL |
dc.references | Kazakow I. E., Artemiev B. M., (1980), Optimization of Dynamic Systems with Random Structure, Nauka, Moscow (w j. rosyjskim). | pl_PL |
dc.references | Kędelski M., Paradysz J., (2006), Demografia, Wyd. AE, Poznań. | pl_PL |
dc.references | Kodlin D., (1967), A New Response Time Distribution, Biometrics, 2, 227-239. | pl_PL |
dc.references | Koissi M. C., Shapiro A. F., (2006), Fuzzy formulation of the Lee-Carter model for mortality forecasting, Insurance: Mathematics and Economics, 39, 287-309. | pl_PL |
dc.references | Kołodziej W., (1970), Wybrane rozdziały analizy matematycznej, Biblioteka Matematyczna, t. 36, PWN, Warszawa. | pl_PL |
dc.references | Kosiński W., Prokopowicz P., (2004), Algebra liczb rozmytych, Matematyka Stosowana, 46, 37-63. | pl_PL |
dc.references | Kosiński W., Prokopowicz P., Ślęzak D., (2003), Ordered fuzzy numbers, Bulletin of the Polish Academy of Sciences - Mathematics, 51, 327-338. | pl_PL |
dc.references | Krane S. A., (1963), Analysis of Survival Data by Regression Techniques, Technometrics, 5, 161-174. | pl_PL |
dc.references | Ladde G. S., Wu L., (2009), Development of modified Geometric Brownian Motion model by using stock price data and basic statistics, Nonlinear Analysis, 71, 1203-1208. | pl_PL |
dc.references | Lee R. D., Carter L., (1992), Modeling and forecasting the time series of U.S. mortality, Journal of the American Statistical Association, 87, 659-671. | pl_PL |
dc.references | Lee R. D., Miller T., (2001), Evaluating the performance of the Lee-Carter method for forecasting mortality, Demography, 38, 537-549. | pl_PL |
dc.references | Lin D. Y., (1991), Goodness-of-Fit Analysis for the Cox Regression Model Based On a Class of Parameter Estimators, Journal of the American Statistical Association, 86, 725-728. | pl_PL |
dc.references | Lipcer R., Sziriajew A., (1981), Statystyka procesów stochastycznych, PWN, Warszawa. | pl_PL |
dc.references | Luciano E., Spreeuw J., Vigna E., (2008), Modelling stochastic mortality for dependents lives, Insurance: Mathematics and Economics, 43, 234-244. | pl_PL |
dc.references | Malik H. J., (1970), Estimation of the Parameters of the Pareto Distribution, Metrika, 15, 126-132. | pl_PL |
dc.references | Malinowski M. T., (2012), Strong solutions to stochastic fuzzy differential equations of Itô type, Mathematics and Computer Modelling, 55, 918-928. | pl_PL |
dc.references | Maurin K., (1971), Analiza, cz. I, Elementy, PWN, Warszawa. | pl_PL |
dc.references | Milevsky M. A., Promislow S. D., (2001), Mortality derivatives and the option annuities, Insurance: Mathematics and Economics, 29, 299-318. | pl_PL |
dc.references | Mlak W., (1970), Wstęp do teorii przestrzeni Hilberta, PWN, Warszawa. | pl_PL |
dc.references | Nelson W., (1969), Hazard Plotting for Incomplete Failure Data, Journal of Quality Technology, 1, 27-52. | pl_PL |
dc.references | Nielsen B., Nielsen J. P., (2010), Identification and Forecasting in the Lee-Carter Model, Economics Series Working Papers No 2010-W07, University of Oxford, Department of Economics, dost , ep on-line pod adresem nuffield.ox.ac.uk/economics/papers/2010/w7/NielsenNielsenNew2010.pdf | pl_PL |
dc.references | Okólski M. (red.), (1990), Determinanty umieralności w świetle teorii i badań empirycznych, Wyd. SGPiS, Warszawa. | pl_PL |
dc.references | Okólski M., (2003), Kryzys zdrowotny w Polsce, Polityka Społeczna, nr 1. | pl_PL |
dc.references | Ostasiewicz S., (2011), Aproksymacja czasu trwania życia w populacjach niejednorodnych, Zeszyty Naukowe WSOWL, 4 (162), 342-358. | pl_PL |
dc.references | Pettitt A. N., (1984), Proportional Odds Model for Survival Data and Estimates Using Ranks, Applied Statistics, 33, 169-175. | pl_PL |
dc.references | Pitacco E., (2004), Survival models in a dynamic context: a survey, Insurance: Mathematics and Economics, 35, 279-298. | pl_PL |
dc.references | Plat R., (2009), On stochastic mortality modeling, Insurance: Mathematics and Economics, 45, 393-404. | pl_PL |
dc.references | Polovko A. M., (1968), Fundamentals of Reliability Theory, Academic Press, New York. | pl_PL |
dc.references | Prentice R. L., (1974), A Log-Gamma Model and Its Maximum Likelihood Estimation, Biometrika, 61, 539-544. | pl_PL |
dc.references | Preston S. H., Heuveline P., Guillot M., (2001), Demography. Measuring and Modeling Population Processes, Blackwell Publishing Ltd., Malden-Oxford-Carlton. | pl_PL |
dc.references | Proschan F., (1963), Theoretical Explanation of Observed Decresing Failure Rate, Technometrics, 5, 375-385. | pl_PL |
dc.references | Quandt R. E., (1966), Old and New Methods of Estimation and the Pareto Distribution, Metrika, 10, 55-82. | pl_PL |
dc.references | Renshaw A., Haberman S., (2003), Lee-Carter mortality forecasting with age-specific enhancement, Insurance: Mathematics and Economics, 33, 255-272. | pl_PL |
dc.references | Renshaw A., Haberman S., (2003), On the forecasting of mortality reduction factors, Insurance: Mathematics and Economics, 32, 379-401. | pl_PL |
dc.references | Renshaw A., Haberman S., (2006), A cohort-based extension to the Lee-Carter model for mortality reduction factor, Insurance: Mathematics and Economics, 38, 556-570. | pl_PL |
dc.references | Rossa A. (red.), (2011), Analiza i modelowanie umieralności w ujęciu dynamicznym, Wyd. UŁ, Łódź. | pl_PL |
dc.references | Rossa A., Socha L., (2013), Proposition of Hybrid Stochastic Lee-Carter Mortality Model, Advances in Methodology and Statistics, 10(1), 1-16. | pl_PL |
dc.references | Rosset E., (1979), Trwanie życia ludzkiego, PWN, Warszawa. | pl_PL |
dc.references | Russo V., Giacometti R., Ortobelli S., Rachev S., Fabozzi F. J., (2011), Calibrating affine stochastic mortality models using term assurance premiums, Insurance: Mathematics and Economics, 49, 53-60. | pl_PL |
dc.references | Sakai S., (1971), C*-algebras and W*-algebras, Springer Verlag, Berlin-Heidelberg-New York. | pl_PL |
dc.references | Schrager D., (2006), Affine stochastic mortality, Insurance: Mathematics and Economics, 38, 81-97. | pl_PL |
dc.references | Sierpiński W., (1968), Arytmetyka teoretyczna, PWN, Warszawa. | pl_PL |
dc.references | Sobczyk K., (1996), Stochastyczne równania różniczkowe, WNT, Warszawa. | pl_PL |
dc.references | Socha L., (1993), Równania momentów w stochastycznych układach dynamicznych, PWN, Warszawa. | pl_PL |
dc.references | Socha L., (2008), Linearization Methods for Stochastic Dynamic Systems, Springer, Berlin. | pl_PL |
dc.references | Stacy E. W., (1962), A Generalization of the Gamma Distribution, The Annals of Mathematical Statistics, 33, 1187-1192. | pl_PL |
dc.references | Stacy E. W., Mihram G. A., (1965), Parameter Estimation for a Generalized Gamma Distribution, Technometrics, 7, 349-358. | pl_PL |
dc.references | Stratonovich R., (1960), A new form of representation of stochastic integral and equations, SIAM Journal on Control and Optimization, 4, 362-371. | pl_PL |
dc.references | Szymański A., Rossa A. (2014), Fuzzy mortality model based on Banach algebra, International Journal of Intelligent Technologies and Applied Statistics, 7(3), 241-265. | pl_PL |
dc.references | Tabeau E., Berg Jehs A., Heathcote Ch. (red.), (2001), Forecasting Mortality in Developed Countries. Insights from Statistical, Demographic and Epidemiological Perspective, Kluwer Academic Publishers, London. | pl_PL |
dc.references | Thiele T. N., (1872), On a mathematical formula to express the rate of mortality throughout life, Journal of the Institute of Actuaries, 16, 313-329. | pl_PL |
dc.references | Wachter K. W., (2006), Essential Demographic Methods, University of California Press, Berkeley. | pl_PL |
dc.references | Weibull W., (1939), Statistical Theory of the Strength of Materials, Ingenioor Vetenskps Akademiens Handlingar, 151, 1-45. | pl_PL |
dc.references | Wilmoth J. R., Horiuchi S., (1999), Rectangularization revised: variability of age at death within human populations, Demography, 36 (4), 475-495. | pl_PL |
dc.references | Wong E., (1971), Stochastic Processes in Information Theory and Dynamical Systems, McGraw-Hill, New York. | pl_PL |
dc.references | Wu S. J., (2003), Estimation for the Two-Parameter Pareto Distribution under Progressive Censoring with Uniform Removals, Journal of Statistical Computation and Simulation, 73, 125-134. | pl_PL |
dc.references | Vasiĉek O., (1977), An equilibrium characterization of the term structure, Journal of Financial Economics, 5, 177-188. | pl_PL |
dc.references | Yin G., Zhang Q., Yang H., Yin K., (2002), A class of hybrid market models: simulation, identification and estimation, Proceedings of the American Control Conference, Anchorage, May 8-10, 2571-2576. | pl_PL |
dc.references | Yin G., Zhang Q., Yang H., Yin K., (2003), Constrained stochastic estimation algorithms for a class of hybrid stock market models, Journal of Optimization Theory and Applications, 118, 157-182. | pl_PL |
dc.references | Zadeh L., (1965), Fuzzy Sets, Information and Control, 8, 338-353. | pl_PL |
dc.references | Zippin C., Armitage P., (1966), Use of Concomitant Variables and Incomplete Survival Information in the Estimation of an Exponential Survival Parameter, Biometrics, 22, 665-672. | pl_PL |
dc.references | Żelazko W., (1968), Algebry Banacha, Biblioteka Matematyczna, t. 32, PWN, Warszawa. | pl_PL |
dc.identifier.doi | 10.18778/8088-041-2 | |
dc.discipline | nauki socjologiczne | pl_PL |
dc.discipline | matematyka | pl_PL |