Show simple item record

dc.contributor.authorSasaki, Katsumi
dc.date.accessioned2022-05-19T14:13:35Z
dc.date.available2022-05-19T14:13:35Z
dc.date.issued2021-10-14
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/41870
dc.description.abstractIn the natural deduction system for classical propositional logic given by G. Gentzen, there are some inference rules with assumptions discharged by the rule. D. Prawitz calls such inference rules improper, and others proper. Improper inference rules are more complicated and are often harder to understand than the proper ones.In the present paper, we distinguish between proper and improper derivations by using sequent systems. Specifically, we introduce a sequent system \(\vdash_{\bf Sc}\) for classical propositional logic with only structural rules, and prove that \(\vdash_{\bf Sc}\) does not allow improper derivations in general. For instance, the sequent \(\Rightarrow p \to q\) cannot be derived from the sequent \(p \Rightarrow q\) in \(\vdash_{\bf Sc}\). In order to prove the failure of improper derivations, we modify the usual notion of truth valuation, and using the modified valuation, we prove the completeness of \(\vdash_{\bf Sc}\). We also consider whether an improper derivation can be described generally by using \(\vdash_{\bf Sc}\).en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;1en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectSequent systemen
dc.subjectimproper derivationen
dc.subjectnatural deductionen
dc.titleA Sequent Systems without Improper Derivationsen
dc.typeOther
dc.page.number91-108
dc.contributor.authorAffiliationNanzan University, Faculty of Science and Technology, 18 Yamazato-Cho, Showa-Ku, Nagoya, 466, Japanen
dc.identifier.eissn2449-836X
dc.referencesW. Breckenridge, O. Magidor, Arbitrary reference, Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition, vol. 158(3) (2012), pp. 377–400, DOI: https://doi.org/10.1007/s11098-010-9676-zen
dc.referencesA. Chagrov, M. Zakharyaschev, Modal logic, Oxford Logic Guides, Oxford University Press, New York (1997).en
dc.referencesK. Fine, Reasoning with arbitrary objects, Aristotelian Society Series, Basil Blackwell, Oxford (1986).en
dc.referencesG. Gentzen, Untersuchungen über das logisch Schließen, Mathematische Zeitschrift, vol. 39 (1934–35), pp. 176–210, 405–431, DOI: https://doi.org/10.1007/BF01201353en
dc.referencesP. Hertz, Über Axiomensysteme für beliebige Satzsysteme, Mathematische Annalen, vol. 101 (1929), pp. 457–514.en
dc.referencesA. Indrzejczak, A Survey of Nonstandard Sequent Calculi, Studia Logica, vol. 102 (2014), pp. 1295–1322, DOI: https://doi.org/10.1007/s11225-014-9567-yen
dc.referencesD. Prawitz, Natural Deduction: A Proof-Theoretical Study, Almqvist & Wiksell, Stockholm (1965).en
dc.referencesK. Robering, Ackermann’s Implication for Typefree Logic, Journal of Logic and Computation, vol. 11(1) (2001), pp. 5–23, DOI: https://doi.org/10.1093/logcom/11.1.5en
dc.referencesP. Schroeder-Heister, Resolution and the Origins of Structural Reasoning: Early Proof-Theoretic Ideas of Hertz and Gentzen, The Bulletin of Symbolic Logic, vol. 8(2) (2002), pp. 246–265, DOI: https://doi.org/10.2178/bsl/1182353872en
dc.referencesR. Suszko, W sprawie logiki bez aksjomatów, Kwartalnik Filozoficzny, vol. 17 (1948), pp. 199–205.en
dc.referencesR. Suszko, Formalna teoria wartości logicznych, Studia Logica, vol. 6 (1957), pp. 145–320, DOI: https://doi.org/10.1007/BF02547932en
dc.contributor.authorEmailsasaki@nanzan-u.ac.jp
dc.identifier.doi10.18778/0138-0680.2021.21
dc.relation.volume51


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0