Show simple item record

dc.contributor.authorKurek, Marta
dc.contributor.authorŻądzińska, Elżbieta
dc.contributor.authorLubowiecka-Gontarek, Beata
dc.contributor.authorBorowska, Beata
dc.contributor.authorRosset, Iwona
dc.date.accessioned2021-12-16T11:51:53Z
dc.date.available2021-12-16T11:51:53Z
dc.date.issued2020
dc.identifier.citationKurek, M., Borowska, B., Lubowiedzka-Gontarek, B. et al. Disturbances in primary dental enamel in Polish autistic children. Sci Rep 10, 12751 (2020). https://doi.org/10.1038/s41598-020-69642-3pl_PL
dc.identifier.urihttp://hdl.handle.net/11089/40072
dc.description.abstractDental enamel is a structure that is formed as a result of the regular functioning of ameloblasts. The knowledge of the patterns of enamel secretion allows an analysis of their disruptions manifested in pronounced additional accentuated lines. These lines represent a physiological response to stress experienced during enamel development. The aim of this study was to assess the occurrence of accentuated lines in the tooth enamel of autistic boys. The width of the neonatal line and the periodicity of the striae of Retzius were also assessed. The study material consisted of longitudinal ground sections of 56 primary teeth (incisors and molars): 22 teeth from autistic children and 34 teeth from the control group. The Mann–Whitney U test indicates that the accentuated lines were found significantly more often in autistic children (Z = 3.03; p = 0.002). No differentiation in the rate of enamel formation and in the rate of regaining homeostasis after childbirth were found. The obtained results may indicate a higher sensitivity of autistic children to stress factors, manifested in more frequent disturbances in the functioning of ameloblasts or may be a reflection of differences in the occurrence of stress factors in the first years of life in both analyzed groups.pl_PL
dc.language.isoenpl_PL
dc.publisherNaturepl_PL
dc.relation.ispartofseriesScientific Reports;20
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectAutism spectrum disorderspl_PL
dc.subjectOral anatomypl_PL
dc.titleDisturbances in primary dental enamel in Polish autistic childrenpl_PL
dc.typeArticlepl_PL
dc.page.number10pl_PL
dc.contributor.authorAffiliationDepartment of Anthropology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Anthropology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Polandpl_PL
dc.contributor.authorAffiliationVisiting Research Fellow in the School of Medical Sciences, Faculty of Health Sciences, The University of Adelaide, South Australia, 5005, Australiapl_PL
dc.contributor.authorAffiliationDepartment of Pedodontics, Dental Institute in Łódź, Teaching Hospital No. 6, 92-213, Łódź, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Anthropology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Anthropology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237, Łódź, Polandpl_PL
dc.identifier.eissn2045-2322
dc.referencesMandy, W. & Lai, M. C. Annual research review: the role of the environment in the developmental psychopathology of autism spectrum condition. J. Child Psychol. Psychiatry 57, 271–292 (2016).pl_PL
dc.referencesHultman, C. M., Sandin, S., Levine, S. Z., Lichtenstein, P. & Reichenberg, A. Advancing paternal age and risk of autism: new evidence from a population-based study and a meta-analysis of epidemiological studies. Mol. Psychiatry 16(12), 1203–1212 (2011).pl_PL
dc.referencesSandin, S. et al. Advancing maternal age is associated with increasing risk for autism: a review and meta-analysis. J. Am. Acad. Child Adolesc. Psychiatry 51(5), 477–486 (2012).pl_PL
dc.referencesGozes, I. et al. Premature primary tooth eruption in cognitive/motor-delayed ADNP-mutated children. Transl Psychiatry 7(2), https://www.nature.com/articles/tp201727 (2017).pl_PL
dc.referencesFitzGerald, C. M. Do enamel microstructures have regular time dependency? Conclusions from the literature and a large-scale study. J. Hum. Evol. 35, 371–386 (1998).pl_PL
dc.referencesRisnes, S. Growth tracks in dental enamel. J. Hum. Evol. 35, 331–350 (1998).pl_PL
dc.referencesFitzGerald, C. M. & Saunders, S. R. A test of histological methods of determining the chronology of accentuated striae in deciduous teeth. Am. J. Phys. Anthropol. 127, 277–290 (2005).pl_PL
dc.referencesAntoine, D., Hillson, S. & Dean, M. C. The developmental clock of dental enamel: a test for the periodicity of prism cross-striations in modern humans and an evaluation of the most likely sources of error in histological studies of this kind. J. Anat. 214, 45–55 (2009).pl_PL
dc.referencesAthanassiou-Papaefthymiou, M. et al. Molecular and circadian controls of ameloblasts. Eur. J. Oral Sci. 119(1), 35–40 (2011).pl_PL
dc.referencesDean, M. C. & Beynon, A. D. Histological reconstruction of crown formation times and initial root formation times in a modern human child. Am. J. Phys. Anthropol. 86, 215–228 (1991).pl_PL
dc.referencesShellis, R. P. Utilization of periodic markings in enamel to obtain information on tooth growth. J. Hum. Evol. 35, 387–400 (1998).pl_PL
dc.referencesDean, M. C. Tooth microstructure tracks the pace of human life-history evolution. Proc. Biol. Sci. 273, 2799–2808 (2006).pl_PL
dc.referencesSmith, T. M. Experimental determination of the periodicity of incremental features in enamel. J. Anat. 208, 99–113 (2006).pl_PL
dc.referencesBirch, W. & Dean, M.C. Rates of enamel formation in human deciduous teeth. In: Comparative Dental Morphology, Frontiers of Oral Biology, 13 (ed. Koppe, T. et al.), 116–120 (Basel & Karger, 2009).pl_PL
dc.referencesBirch, W. & Dean, M. C. A method of calculating human deciduous crown formation times and of estimating the chronological ages of stressful events occurring during deciduous enamel formation. J. Forensic. Leg. Med. 22, 127–144 (2014).pl_PL
dc.referencesGoodman, A. H. & Rose, J. C. Assessment of systemic physiological perturbations from dental enamel hypoplasias and associated histological structures. Yearbook Phys. Anthropol. 33, 59–110 (1990).pl_PL
dc.referencesSkinner, M. F. & Anderson, G. S. Individualization and enamel histology: a case report in forensic anthropology. J. Forensic. Sci. 36, 939–948 (1991).pl_PL
dc.referencesWitzel, C., Kierdorf, U., Schultz, M. & Kierdorf, H. Insights from the inside: histological analysis of abnormal enamel microstructure associated with hypoplastic enamel defects in human teeth. Am. J. Phys. Anthropol. 136(4), 400–414 (2008).pl_PL
dc.referencesHillson, S. Tooth development in human evolution and bioarchaeology, 1st ed. Chapter 4 (New York: Cambridge University Press, 2014).pl_PL
dc.referencesMahoney, P. Two-dimensional patterns of human enamel thickness of deciduous (dm1, dm2) and permanent first (M1) mandibular molars. Arch. Oral Biol. 55, 115–126 (2010).pl_PL
dc.referencesMahoney, P. Incremental enamel development in modern human deciduous anterior teeth. Am. J. Phys. Anthropol. 147, 637–651 (2012).pl_PL
dc.referencesMahoney, P. Dental fast track: prenatal enamel growth, incisor eruption, and weaning in human infants. Am. J. Phys. Anthropol. 156, 407–421 (2015).pl_PL
dc.referencesTeivens, A., Mörnstad, H., Norén, J. G. & Gidlund, E. Enamel incremental lines as recorders for disease in infancy and their relation to the diagnosis of SIDS. Forensic Sci. Int. 81, 175–183 (1996).pl_PL
dc.referencesMacho, G. A., Reid, D. J., Leakey, M. G., Jablonski, N. & Beynon, A. D. Climatic effects on dental development of Theropithecus oswaldi from Koobi Fora and Olorgesailie. J. Hum. Evol. 30, 57–70 (1996).pl_PL
dc.referencesDirks, W., Humphrey, L. T., Dean, M. C. & Jeffries, T. E. The relationship of accentuated lines in enamel to weaning stress in juvenile baboons (Papio hamadryas anubis). Folia Primatol. 81, 207–223 (2010).pl_PL
dc.referencesDirks, W., Reid, D. J., Jolly, C. J., Phillips-Conroy, J. E. & Brett, F. L. Out of the mouths of baboons: stress, life history, and dental development in the Awash National Park Hybrid Zone Ethiopia. Am. J. Phys. Anthropol. 118, 239–252 (2002).pl_PL
dc.referencesZilberman, U., Zilberman, S., Keinan, D. & Eliyahu, M. Enamel development in primary molars from children with familial dysautonomia. Arch. Oral Biol. 55, 907–912 (2010).pl_PL
dc.referencesSkinner, M. & Dupras, T. Variation in birth timing and location of the neonatal line in human enamel. J. Forensic. Sci. 38(6), 1383–1390 (1993).pl_PL
dc.referencesZanolli, C., Bondioli, L., Manni, F., Rossi, P. & Macchiarelli, R. Gestation length, mode of delivery and neonatal line thickness variation. Hum. Biol. 83, 695–713 (2011).pl_PL
dc.referencesKurek, M. et al. Prenatal factors associated with the neonatal line thickness in human deciduous incisors. HOMO 66(3), 251–263 (2015).pl_PL
dc.referencesKaushik, G. & Zarbalis, K.S. Prenatal neurogenesis in autism spectrum disorders. Front Chem. 4, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791366/ (2016).pl_PL
dc.referencesLyall, K. et al. Parental social responsiveness and risk of autism spectrum disorder in offspring. JAMA Psychiatry 71(8), 936–942 (2014).pl_PL
dc.referencesAbbeduto, L., McDuffie, A. & Thurman, A.J. The fragile X syndrome–autism comorbidity: what do we really know? Front Genet 5,pl_PL
dc.referenceshttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4199273 (2014).pl_PL
dc.referencesJulich, K. & Sahin, M. Autism spectrum disorders in tuberculosis sclerosis. In: Comprehensive Guide to Autism (ed. Patel, V.B., Preedy, V.R. & Martin, C.R.) 1699–1714 (Springer Reference, 2014).pl_PL
dc.referencesLotspeich, L. J. & Ciaranello, R. D. The neurobiology and genetics of infantile autism. Int. Rev. Neurobiol. 35, 87–129 (1993).pl_PL
dc.referencesKhemir, S. et al. Autism in phenylketonuria patients: from clinical presentation to molecular defects. J. Child Neurol. 31(7), 843–849 (2016).pl_PL
dc.referencesArndt, T. L., Stodgell, C. J. & Rodier, P. M. The teratology of autism. Int. J. Dev. Neurosci. 23(2–3), 189–199 (2005).pl_PL
dc.referencesRosset, I. Centile distributions of birth size in term infants of Łódź. Pediatr. Pol. 84, 151–158 (2009).pl_PL
dc.referencesRose, J. C., Armelagos, G. J. & Lallo, J. W. Histological enamel indicator of childhood stress in prehistoric skeletal samples. Am. J. Phys. Anthropol. 49, 511–516 (1978).pl_PL
dc.referencesSeow, W. K. & Perham, S. Enamel hypoplasia in prematurely born children: a scanning electron microscopic study. J. Pedod. 14, 235–239 (1990).pl_PL
dc.referencesAine, L. et al. Enamel defects in primary and permanent teeth of children born prematurely. J. Oral Pathol. Med. 29(8), 403–409 (2000).pl_PL
dc.referencesSeow, W. K., Young, W. G., Tsang, A. K. L. & Daley, T. A study of primary dental enamel from preterm and full-term children using light and scanning electron microscopy. Pediatr. Dent. 27, 374–379 (2005).pl_PL
dc.referencesJohnson, N. P., Watson, N. O. & Massler, M. Tooth ring analysis in mongolism. Aust. Dent. J. 10(4), 282–286 (1965).pl_PL
dc.referencesFitzGerald, C.M. & Rose, J.C. Reading between the lines: dental development and subadult age assessment using the microstructural growth markers of teeth. In: Biological Anthropology of the Human Skeleton (ed. Katzenberg, M.A. & Saunders, S.R.), 163–186 (New York, Wiley-Liss., 2000).pl_PL
dc.referencesLi, C. & Risnes, S. SEM observations of Retzius lines and prism cross-striations in human dental enamel after different acid etching regimes. Arch. Oral Biol. 49, 45–52 (2004).pl_PL
dc.referencesReid, D. J. & Ferrell, R. J. The relationship between number of striae of Retzius and their periodicity in imbricational enamel formation. J. Hum. Evol. 50, 195–202 (2006).pl_PL
dc.referencesBailey, A. et al. Autism as a strongly genetic disorder: evidence from a British twin study. Psychol. Med. 25(1), 63–77 (1995).pl_PL
dc.referencesLevy, S. E., Mandell, D. S. & Schultz, R. T. Autism. Lancet 374(9701), 1627–1638 (2009).pl_PL
dc.referencesGrafodatskaya, D., Chung, B., Szatmari, P. & Weksberg, R. Autism spectrum disorders and epigenetics. J. Am. Acad. Child Adolesc. Psychiatry 49(8), 794–809 (2010).pl_PL
dc.referencesCareaga, M., Van de Water, J. & Ashwood, P. Immune dysfunction in autism: a pathway to treatment. Neurotherapeutics 7(3), 283–292 (2010).pl_PL
dc.referencesGoines, P. & Van de Water, J. The immune system’s role in the biology of autism. Curr. Opin. Neurol. 23(2), 111–117 (2010).pl_PL
dc.referencesRosen, N. J., Yoshida, C. K. & Croen, L. A. Infection in the first 2 years of life and autism spectrum disorders. Pediatrics 119(1), 61–69 (2007).pl_PL
dc.referencesJaskoll, T. et al. Cytomegalovirus induces stage-dependent enamel defects and misexpression of amelogenin, enamelin and dentin sialophosphoprotein in developing mouse molars. Cells Tissues Org. 192(4), 221–239 (2010).pl_PL
dc.referencesSeow, W.K. Dental enamel defects in the primary dentition: prevalence and etiology. In Planning and Care for Children and Adolescents with Dental Enamel Defects (ed. Drummond, B.K. & Kilpatrick, N.), 1–14 (Berlin, Springer, 2015).pl_PL
dc.referencesBeentjes, V. E., Weerheijm, K. L. & Groen, H. J. Factors involved in the aetiology of molar-incisor hypomineralisation (MIH). Eur. J. Paediatr. Dent. 3(1), 9–13 (2002).pl_PL
dc.referencesCrombie, F., Manton, D. & Kilpatrick, N. Aetiology of molar-incisor hypomineralization: a critical review. Int. J. Paediatr. Dent 19(2), 73–83 (2009).pl_PL
dc.referencesTung, K., Fujita, H., Yamashita, Y. & Takagi, Y. Effect of turpentine-induced fever during the enamel formation of rat incisor. Arch. Oral Biol. 51(6), 464–470 (2006).pl_PL
dc.referencesRyynänen, H., Sahlberg, C., Lukinmaa, P. L. & Alaluusua, S. The effect of high temperature on the development of mouse dental enamel in vitro. Arch. Oral Biol. 59(4), 400–406 (2014).pl_PL
dc.referencesWhatling, R. & Fearne, J. M. Molar incisor hypomineralization: a study of aetiological factors in a group of UK children. Int. J. Paediatr. Dent. 18(3), 155–162 (2008).pl_PL
dc.referencesChauhan, A., Chauhan, V., Brown, V. T. & Cohen, I. L. Oxidative stress in autism: increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin. Life Sci. 75, 2539–2549 (2004).pl_PL
dc.referencesMcGinnis, W. R. Oxidative stress in autism. Altern. Ther. Health Med. 10, 22–36 (2004).pl_PL
dc.referencesGhanizadeh, A. et al. Glutathione-related factors and oxidative stress in autism, a review. Curr. Med. Chem. 19(2), 4000–4005 (2012).pl_PL
dc.referencesWilkins, H. M., Kirchhof, D., Manning, E., Josep, J. W. & Linseman, D. A. Mitochondrial glutathione transport is a key determinant of neuronal susceptibility to oxidative and nitrosative stress. J. Biol. Chem. 288, 5091–5101 (2013).pl_PL
dc.referencesFrustaci, A., Neri, M., Cesario, A., Adams, J. B. & Domenici, E. Oxidative stress-related biomarkers in autism: systematic review and meta-analyses. Free Radical Biol. Med. 52, 2128–2141 (2012).pl_PL
dc.referencesWard, A. J. A comparison and analysis of the presence of family problems during pregnancy of mothers of “autistic” children and mothers of normal children. Child Psychiat. Hum. Dev. 20(4), 279–288 (1990).pl_PL
dc.referencesBeversdorf, D. Q. et al. Timing of prenatal stressors and autism. J. Autism Dev. Disord. 35(4), 471–478 (2005).pl_PL
dc.referencesKinney, D. K., Munir, K. M., Crowley, D. J. & Miller, A. M. Prenatal stress and risk for autism. Neurosci. Biobehav. Rev. 32(8), 1519–1532 (2008).pl_PL
dc.referencesGlover, V. Maternal stress or anxiety in pregnancy and emotional development of the child. Br. J. Psychiatry 171, 105–106 (1997).pl_PL
dc.referencesWeinstock, M. Does prenatal stress impair coping and regulation of hypothalamic-pituitary-adrenal axis?. Neurosci. Biobehav. Rev. 21(1), 1–10 (1997).pl_PL
dc.referencesMulder, E. J. et al. Prenatal maternal stress: effects on pregnancy and the (unborn) child. Early Hum. Dev. 70(1–2), 3–14 (2002).pl_PL
dc.referencesO’Connor, T.G., Heron, J., Golding, J., Beveridge, M. & Glover, V. Maternal antenatal anxiety and children’s behavioural/emotional problems at 4 years. Report from the Avon longitudinal study of parents and children. Br. J. Psychiatry 180, 502–508 (2002).pl_PL
dc.referencesSeckl, J. R. & Meaney, M. J. Glucocorticoid “programming” and PTSD risk. Ann. N. Y. Acad. Sci. 1071, 351–378 (2006).pl_PL
dc.referencesRichdale, A. L. & Prior, M. R. Urinary cortisol circadian rhythm in a group of high-functioning children with autism. J. Autism Dev. Disord. 22(3), 433–447 (1992).pl_PL
dc.referencesCorbett, B. A., Mendoza, S., Abdullah, M., Wegelin, J. A. & Levine, S. Cortisol circadian rhythms and response to stress in children with autism. Psychoneuroendocrinology 31(1), 59–68 (2006).pl_PL
dc.referencesFabue, L.C., Soriano, Y.L. & Sarrión Pérez, M.G. Dental management of patients with endocrine disorders. J. Clin. Exp. Dent. 2(4), 196–203 (2010).pl_PL
dc.referencesHallett, K. B. & Hall, K. R. Congenital adrenal hyperplasia and enamel hypoplasia: case report. Pediatr. Dent. 17, 54–59 (1995).pl_PL
dc.referencesHinde, K. et al. Cortisol in mother’s milk across lactation reflects maternal life history and predicts infant temperament. Behav. Ecol. 26, 269–228 (2015).pl_PL
dc.referencesSmith, T.M. Incremental development of primate dental enamel, Dissertation, Stony Brook University (2004).pl_PL
dc.referencesKoperny, M., Bała, M., Bandoła, K., Seweryn, M. & Żak, J. Analysis of adverse events following immunisation in Poland between 2003–2012. Probl. Hig Epidemiol. 95(3), 609–615 (2014).pl_PL
dc.referencesPruszkowska-Przybylska, P. et al. The association between socioeconomic status, duration of breastfeeding, parental age and birth parameters with BMI, body fat and muscle mass among prepubertal children in Poland. Anthropol. Anz 76(5), 409–419 (2019).pl_PL
dc.referencesAbdullah, M. M. et al. Heavy metal in children’s tooth enamel: related to autism and disruptive behaviours?. J. Autism Dev. Disord. 42, 929–936 (2012).pl_PL
dc.referencesCamann, D. E. et al. Acetaminophen, pesticide, and diethylhexylphthalate metabolites, anandamide, and fatty acids in deciduous molars: potential biomarkers of perinatal exposure. J. Expo. Sci. Environ. Epidemiol. 23(2), 190–196 (2013).pl_PL
dc.referencesPalmer, R.F. et al. Organic compounds detected in deciduous teeth: a replication study from children with autism in two samples. J. Environ. Public Health, https://www.hindawi.com/journals/jeph/2015/862414 (2015).pl_PL
dc.referencesArora, M. et al. Fetal and postnatal mental dysregulation in autism. Nat. Commun. 8, https://www.nature.com/articles/ncomms15493 (2017).pl_PL
dc.referencesAustin, C. et al. Dynamical properties of elemental metabolism distinguish attention deficit hyperactivity disorder from autism spectrum disorder. Translat. Psychiatry 9, 1–9 (2019).pl_PL
dc.referencesŻądzińska, E. et al. The effect of the season of birth and of selected maternal factors on linear enamel thickness in modern human deciduous incisors. Arch. Oral Biol. 58, 951–963 (2013).pl_PL
dc.referencesDavis, K. A. et al. Teeth as potential new tools to measure early-life adversity and subsequent mental health risk: an interdisciplinary review and conceptual model. Biol. Psychiat. 87, 502–513 (2019).pl_PL
dc.contributor.authorEmailmarta.kurek@biol.uni.lodz.plpl_PL
dc.identifier.doi10.1038/s41598-020-69642-3
dc.relation.volume1pl_PL
dc.disciplinenauki biologicznepl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Uznanie autorstwa 4.0 Międzynarodowe