dc.contributor.author | Kontek, Renata | |
dc.contributor.author | Marciniak, Beata | |
dc.contributor.author | Chilczuk, Barbara | |
dc.contributor.author | Materska, Małgorzata | |
dc.date.accessioned | 2021-11-19T10:01:16Z | |
dc.date.available | 2021-11-19T10:01:16Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Chilczuk, B.; Marciniak, B.; Kontek, R.; Materska, M. Diversity of the Chemical Profile and Biological Activity of Capsicum annuum L. Extracts in Relation to Their Lipophilicity. Molecules 2021, 26, 5215. https://doi.org/10.3390/ molecules26175215 | pl_PL |
dc.identifier.issn | 1420-3049 | |
dc.identifier.uri | http://hdl.handle.net/11089/39811 | |
dc.description.abstract | Ethanol extracts of two types of pepper (sweet and hot) were separated into fractions
with increasing lipophilicity. After drying the extracts and fractions, their chemical composition,
anti-radical activity in the DPPH radical system, and cytotoxic activity against PC-3 and HTC-116
cells were determined. A detailed qualitative analysis of the fractions was performed with the
LC-QTOF-MS method. It was found that the chemical composition of pepper fractions did not
always reflect their biological activity. The highest antiradical activity was detected in the fraction
eluted with 40% methanol from sweet pepper. The highest total content of phenolic compounds was
found in an analogous fraction from hot pepper, and this fraction showed the strongest cytotoxic
effect on the PC-3 tumour line. The LC-MS analysis identified 53 compounds, six of which were
present only in sweet pepper and four only in hot pepper. The unique chemical composition of the
extracts was found to modulate their biological activity, which can only be verified experimentally. | pl_PL |
dc.description.sponsorship | The project is financed under the program of the Minister of Science and Higher Education
under the name “Regional Initiative of Excellence” in 2019–2022 project number 029/RID/2018/19
funding amount 11 927 330.00 PLN”. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | MDPI | pl_PL |
dc.relation.ispartofseries | Molecules;26: 5215 | |
dc.rights | Uznanie autorstwa 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Capsicum annuum | pl_PL |
dc.subject | phenolic compounds | pl_PL |
dc.subject | antiradical activity | pl_PL |
dc.subject | anticancer properties | pl_PL |
dc.subject | LCQTOF-MS | pl_PL |
dc.title | Diversity of the Chemical Profile and Biological Activity of Capsicum annuum L. Extracts in Relation to Their Lipophilicity | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 11 | pl_PL |
dc.contributor.authorAffiliation | Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | Group of Phytochemistry, Department of Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland | pl_PL |
dc.contributor.authorAffiliation | Group of Phytochemistry, Department of Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland | pl_PL |
dc.references | Wang, Z.; Li, S.; Ge, S.; Lin, S. Review of distribution, extraction methods, and health benefits of bound phenolics in food plants. J. Agric. Food Chem. 2020, 68, 3330–3343. | pl_PL |
dc.references | Lattanzio, V.; Lattanzio, M.T.; Cardinali, A. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. In Phytochemistry: Advances in Research; Research Signpost: Trivandrum, India, 2006; Volume 661, pp. 23–67. ISBN 81-308-0034-9. | pl_PL |
dc.references | Leong, H.L.; Show, P.L.; Lim, M.H.; Ooi, C.W.; Ling, T.C. Natural red pigments from plants and their health benefits: A review. Food Rev. Int. 2018, 34, 463–482. | pl_PL |
dc.references | Csepregi, K.; Hideg, E. Phenolic compound diversity explored in the context of photo-oxidative stress protection. Phytochem. Anal. 2018, 29, 129–136. | pl_PL |
dc.references | Mbaveng, A.T.; Zhao, Q.; Kuete, V. Harmful and protective effects of phenolic compounds from african medicinal plants. In Toxicological Survey of African Medicinal Plants; Elsevier: New York, NY, USA, 2014; pp. 577–609. | pl_PL |
dc.references | Harborne, J.B.; Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry 2000, 55, 481–504. | pl_PL |
dc.references | Heleno, S.A.; Martins, A.; Querioz, M.J.R.P.; Ferreira, I.C.F.R. Bioactivity of phenolic acids: Metabolites versus parent compounds: A review. Food Chem. 2015, 173, 501–513. | pl_PL |
dc.references | Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. | pl_PL |
dc.references | Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines 2018, 5, 93. | pl_PL |
dc.references | Herranz-López, M.; Losada-Echeberría, M.; Barrajón-Catalán, E. The Multitarget activity of natural extracts on cancer: Synergy and xenohormesis. Medicines 2019, 6, 6. | pl_PL |
dc.references | Yao, L.H.; Jiang, Y.M.; Shi, J.; Tomas-Barberan, F.A.; Datta, N.; Singanusong, R.; Chen, S.S. Flavonoids in food and their health benefits. Plant Foods Hum. Nutr. 2004, 59, 113–122. | pl_PL |
dc.references | Stefanescu, B.E.; Szabo, K.; Mocan, A.; Crisan, G. Phenolic compounds from five Ericaceae species leaves and their related bioavailability and health benefits. Molecules 2019, 24, 2046. | pl_PL |
dc.references | Cheng, A. Review: Shaping a sustainable food future by rediscovering long-forgotten ancient grains. Plant Sci. 2018, 269, 136–142. | pl_PL |
dc.references | Hamburger, M. Isatis tinctoria—From the rediscovery of an ancient medicinal plant towards a novel anti-inflammatory phytopharmaceutical. Phytochem. Rev. 2002, 1, 333–344. | pl_PL |
dc.references | Zao, L.; Pan, F.; Li, Y.; Hao, S.; Mehmood, A.; Wang, Y.; Wang, C. Structure characteristics of flavonoids for heterocyclic aromatic amines inhibition using quantitative structure-activity relationship modelling. Food Bioch. 2020, 44, 13390. | pl_PL |
dc.references | Lagunin, A.; Filimonov, D.; Poroikov, V. Multi-targeted natural products evaluation based on biological activity prediction with PASS. Curr. Pharm. Des. 2010, 16, 1703–1717. | pl_PL |
dc.references | Chu, K.O.; Chan, S.-O.; Pang, C.P.; Wang, C.C. Pro-oxidative and antioxidative controls and signalling modification of polyphenolic phytochemicals: Contribution to health promotion and disease prevention. J. Agric. Food Chem. 2014, 62, 4026–4038. | pl_PL |
dc.references | Stepanchikova, A.V.; Lagunin, A.A.; Filimonov, D.A.; Poroikov, V.V. Prediction of biological activity spectra for substances: Evaluation on the diverse sets of drug-like structures. Curr. Pharm. Des. 2003, 10, 225–233. | pl_PL |
dc.references | Chilczuk, B.; Marciniak, B.; Stochmal, A.; Pecio, Ł.; Kontek, R.; Jackowska, J.; Materska, M. Anticancer potential and Capsianosides identification in lipophilic fraction of sweet pepper (Capsicum annuum L.). Molecules 2020, 25, 3097. | pl_PL |
dc.references | Maksimova, V.; Gudeva, K.L.; Gulaboski, R.; Nieber, K. Co-extracted bioactive compounds in Capsicum fruit extracts prevent the cytotoxic effects of capsaicin on B104 neuroblastoma cells. Braz. J. Pharmacog. 2016, 26, 744–750. | pl_PL |
dc.references | Mennella, G.; D’Alessandro, A.; Francese, G.; Fontanella, D.; Parisi, M.; Tripodi, P. Occurrence of variable levels of healthpromoting fruit compounds in horn-shaped Italian sweet pepper varieties assessed by a comprehensive approach. J. Sci. Food Agric. 2018, 98, 3280–3289. | pl_PL |
dc.references | Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.; Corella, D.; Arós, F. Primary prevention of cardiovascular disease with a Mediterranean diet. N. Engl. J. Med. 2013, 368, 1279–1290. | pl_PL |
dc.references | Padayatty, S.J.; Katz, A.; Wang, Y.; Eck, P.; Kwon, O.; Lee, J.H. Vitamin C as an antioxidant: Evaluation, of its role in disease prevention. J. Am. Coll. Nutr. 2003, 22, 18–35. | pl_PL |
dc.references | Gómez-García, M.R.; Ochoa-Alejo, N. Biochemistry and molecular biology of carotenoid biosynthesis in chili peppers (Capsicum spp.). Int. J. Mol. Sci. 2013, 14, 19025–19053. | pl_PL |
dc.references | Chávez-Mendoza, C.; Sánchez, E.; Carvajal-Millán, E.; Muñoz-Márquez, E.; Guevara-Aguilar, A. Characterization of the nutraceutical quality and antioxidant activity in bell pepper in response to grafting. Molecules 2013, 18, 15689–15703. | pl_PL |
dc.references | Amarowicz, R.; Shahidi, F. Antioxidant activity of green tea catechins in a β-carotene-linoleate model system. J. Food Lipids 1995, 2, 47–56. | pl_PL |
dc.references | Ferysiuk, K.; Wójciak, K.M.; Materska, M.; Chilczuk, B.; Pabich, M. Modification of lipid oxidation and antioxidant capacity in canned refrigerated pork with a nitrite content reduced by half and addition of sweet pepper extract. Int. Food Sci. Technol. 2020, 118, 108738. | pl_PL |
dc.references | Chilczuk, B.; Materska, M.; Staszowska-Karkut, M.; Pabich, M. Pepper extracts as a source of bioactive substances. Przem. Chem. 2018, 9, 116172. | pl_PL |
dc.references | Burda, S.; Oleszek, W. Antioxidant and Antiradical Activities of Flavonoids. J. Agric. Food Chem. 2001, 49, 2774–2779. | pl_PL |
dc.references | Muntenau, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021, 22, 3380. | pl_PL |
dc.references | Kevers, C.; Falkowski, M.; Tabart, J.; Defraigne, J.O.; Dommes, J.; Pincemail, J. Evolution of antioxidant capacity during storage of selected fruits and vegetable. J. Agric. Food Chem. 2007, 55, 8596–8603. | pl_PL |
dc.references | Alvarez-Parrilla, E.; Rosa, L.; Amarowicz, R.; Shahidi, F. Antioxidant activity of fresh and processed Jalapeno and Serrano peppers. J. Agric. Food Chem. 2011, 59, 163–173. | pl_PL |
dc.references | Materska, M.; Perucka, I. Antioxidant activity of the main phenolic compounds isolated from hot pepper fruit (Capsicum annuum L.). J. Agric. Food Chem. 2005, 53, 1750–1756. | pl_PL |
dc.references | Tanaka, Y.; Hosokawa, M.; Miwa, T.; Watanabe, T.; Yazawa, S. Novel loss-of-function putative aminotransferase alleles cause biosynthesis of capsinoids, nonpungent capsaicinoid analogues, in midle pungent chili peppers (Capsicum chinese). J. Agric. Food Chem. 2010, 58, 11762–11767. | pl_PL |
dc.references | Esghaei, M.; Ghaffari, H.; Esboei, B.R.; Tapeh, Z.E.; Salim, F.B.; Motevalian, M. Evaluation of Anticancer Activity of Camellia Sinensis in the Caco-2 Colorectal Cancer Cell Line. Asian Pac. J. Cancer Prev. 2018, 19, 1697–1701. | pl_PL |
dc.references | Krzyszto ´n-Russjan, J.; Ksi ˛azek, I.; Anuszewska, E. Comparison of MTT and EZ4U assays applied for xenobiotics cytotoxicity ˙ evaluation. Farm. Pol. 2009, 65, 395–402. | pl_PL |
dc.references | Chen, L.; Hwang, J.E.; Choi, B.; Gu, M.K.; Park, Y.; Kang, Y.H. Antioxidant capacities and cytostatic effect of Korean red pepper (Capsicum annuum L): A screening and in vitro study. J. Soc. Appl. Biol. Chem. 2014, 57, 43–52. | pl_PL |
dc.references | Jeong, W.Y.; Jin, J.S.; Cho, Y.A.; Lee, J.H.; Park, S.; Jeong, S.W.; Kim, Y.H.; Lim, C.S.; Kim, G.S.; Lee, J.S.; et al. Determination of polyphenols in three Capsicum annuum L. (bell pepper) varieties using high-performance liquid chromatography-tandem mass spectrometry: Their contribution to overall antioxidant and anticancer activity. J. Sep. Sci. 2011, 34, 2967–2974. | pl_PL |
dc.references | Hernandez-Perez, T.; Gomez-Garcia, M.R.; Valverde, M.E.; Paredes-Lopez, O. Capsicum annuum (hot pepper): An ancient Latin-American crop with outstanding bioactive compounds and nutraceutical potential. A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2972–2993. | pl_PL |
dc.references | Materska, M. Bioactive phenolics of fresh and freeze-dried sweet and semi-spicy pepper fruits (Capsicum annuum L). J. Funct. Foods 2014, 7, 269–277. | pl_PL |
dc.references | Pascale, R.; Acquavia, M.A.; Cataldi, T.R.; Onzo1, A.; Coviello, D.; Bufo, S.A.; Scrano, L.; Ciriello, R.; Guerrieri1, A.; Bianco, G. Profiling of quercetin glycosides and acyl glycosides in sun-dried pepperoni di Senise peppers (Capsicum annuum L.) by a combination of LC-ESI(-)-MS/MS and polarity prediction in reversed-phase separations. Anal. Bioanal. Chem. 2020, 412, 3005–3015. | pl_PL |
dc.references | Kelebek, H.; Sevindik, O.; Uzlasir, T.; Selli, A. LC-DAD/ESI MS/MS characterization of fresh and cooked Capia and Aleppo red peppers (Capsicum annuum L.) phenolic profiles. Eur. Food Res. Technol. 2020, 246, 1971–1980. | pl_PL |
dc.references | Batiha, G.E.-S.; Alqahtani, A.; Ojo, O.A.; Shaheen, H.M.; Wasef, L.; Elzeiny, M.; Ismail, M.; Shalaby, M.; Murata, T.; ZaragozaBastida, A.; et al. Biological properties, bioactive constituents, and pharmacokinetics of some Capsicum spp. and capsaicinoids. Int. J. Mol. Sci. 2020, 21, 5179. | pl_PL |
dc.references | Zheng, W.; Wang, S. Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem. 2001, 49, 5165–5170. | pl_PL |
dc.references | Zhisten, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. | pl_PL |
dc.references | Nicolle, C.; Carnat, A.; Fraisse, D.; Lamaison, J.L.; Rock, E.; Michel, H.; Amouroux, P.; Remesy, C. Characterisation and variation of antioxidant micronutrients in lettuce (Lactuca sativa folium). J. Sci. Food Agric. 2004, 84, 2061–2069. | pl_PL |
dc.references | Conforti, F.; Statti, G.A.; Menichini, F. Chemical and biological variability of hot pepper fruits (Capsicum annuum var. acuminatum L.) in relation to maturity stage. Food Chem. 2007, 102, 1096–1104. | pl_PL |
dc.references | Abe, K.; Matsuki, N. Measurement of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) reduction activity and lactate dehydrogenase release using MTT. Neurosci. Res. 2000, 38, 325–329. | pl_PL |
dc.references | Perez, J.; Pecio, Ł.; Kowalczyk, M.; Kontek, R.; Gajek, G.; Stopinesk, L.; Mirt, I.; Stichmal, A.; Oleszek, W. Cytotoxic triterpenoids isolated from sweet chestnut heartwood (Castanea sativa) and their health benefits implication. Food Chem. Toxicol. 2017, 109, 863–870. | pl_PL |
dc.references | Łudzik, K.; Kustrzepa, K.; Kowalewicz-Kulbat, M.; Kontek, R.; Kontek, B.; ·Wróblewska, A.; Jó´zwiak, M.; Lulo, D. Antimicrobial and cytotoxic properties of bis quaternary ammonium bromides of different spacer length. J. Surfac. Deterg. 2018, 21, 91–99. | pl_PL |
dc.contributor.authorEmail | malgorzata.materska@up.lublin.pl | pl_PL |
dc.identifier.doi | 10.3390/molecules26175215 | |
dc.relation.volume | 17 | pl_PL |
dc.discipline | nauki biologiczne | pl_PL |