Pokaż uproszczony rekord

dc.contributor.authorKontek, Renata
dc.contributor.authorMarciniak, Beata
dc.contributor.authorChilczuk, Barbara
dc.contributor.authorMaterska, Małgorzata
dc.date.accessioned2021-11-19T10:01:16Z
dc.date.available2021-11-19T10:01:16Z
dc.date.issued2021
dc.identifier.citationChilczuk, B.; Marciniak, B.; Kontek, R.; Materska, M. Diversity of the Chemical Profile and Biological Activity of Capsicum annuum L. Extracts in Relation to Their Lipophilicity. Molecules 2021, 26, 5215. https://doi.org/10.3390/ molecules26175215pl_PL
dc.identifier.issn1420-3049
dc.identifier.urihttp://hdl.handle.net/11089/39811
dc.description.abstractEthanol extracts of two types of pepper (sweet and hot) were separated into fractions with increasing lipophilicity. After drying the extracts and fractions, their chemical composition, anti-radical activity in the DPPH radical system, and cytotoxic activity against PC-3 and HTC-116 cells were determined. A detailed qualitative analysis of the fractions was performed with the LC-QTOF-MS method. It was found that the chemical composition of pepper fractions did not always reflect their biological activity. The highest antiradical activity was detected in the fraction eluted with 40% methanol from sweet pepper. The highest total content of phenolic compounds was found in an analogous fraction from hot pepper, and this fraction showed the strongest cytotoxic effect on the PC-3 tumour line. The LC-MS analysis identified 53 compounds, six of which were present only in sweet pepper and four only in hot pepper. The unique chemical composition of the extracts was found to modulate their biological activity, which can only be verified experimentally.pl_PL
dc.description.sponsorshipThe project is financed under the program of the Minister of Science and Higher Education under the name “Regional Initiative of Excellence” in 2019–2022 project number 029/RID/2018/19 funding amount 11 927 330.00 PLN”.pl_PL
dc.language.isoenpl_PL
dc.publisherMDPIpl_PL
dc.relation.ispartofseriesMolecules;26: 5215
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectCapsicum annuumpl_PL
dc.subjectphenolic compoundspl_PL
dc.subjectantiradical activitypl_PL
dc.subjectanticancer propertiespl_PL
dc.subjectLCQTOF-MSpl_PL
dc.titleDiversity of the Chemical Profile and Biological Activity of Capsicum annuum L. Extracts in Relation to Their Lipophilicitypl_PL
dc.typeArticlepl_PL
dc.page.number11pl_PL
dc.contributor.authorAffiliationDepartment of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Polandpl_PL
dc.contributor.authorAffiliationGroup of Phytochemistry, Department of Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Polandpl_PL
dc.contributor.authorAffiliationGroup of Phytochemistry, Department of Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Polandpl_PL
dc.referencesWang, Z.; Li, S.; Ge, S.; Lin, S. Review of distribution, extraction methods, and health benefits of bound phenolics in food plants. J. Agric. Food Chem. 2020, 68, 3330–3343.pl_PL
dc.referencesLattanzio, V.; Lattanzio, M.T.; Cardinali, A. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. In Phytochemistry: Advances in Research; Research Signpost: Trivandrum, India, 2006; Volume 661, pp. 23–67. ISBN 81-308-0034-9.pl_PL
dc.referencesLeong, H.L.; Show, P.L.; Lim, M.H.; Ooi, C.W.; Ling, T.C. Natural red pigments from plants and their health benefits: A review. Food Rev. Int. 2018, 34, 463–482.pl_PL
dc.referencesCsepregi, K.; Hideg, E. Phenolic compound diversity explored in the context of photo-oxidative stress protection. Phytochem. Anal. 2018, 29, 129–136.pl_PL
dc.referencesMbaveng, A.T.; Zhao, Q.; Kuete, V. Harmful and protective effects of phenolic compounds from african medicinal plants. In Toxicological Survey of African Medicinal Plants; Elsevier: New York, NY, USA, 2014; pp. 577–609.pl_PL
dc.referencesHarborne, J.B.; Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry 2000, 55, 481–504.pl_PL
dc.referencesHeleno, S.A.; Martins, A.; Querioz, M.J.R.P.; Ferreira, I.C.F.R. Bioactivity of phenolic acids: Metabolites versus parent compounds: A review. Food Chem. 2015, 173, 501–513.pl_PL
dc.referencesShahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897.pl_PL
dc.referencesTungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines 2018, 5, 93.pl_PL
dc.referencesHerranz-López, M.; Losada-Echeberría, M.; Barrajón-Catalán, E. The Multitarget activity of natural extracts on cancer: Synergy and xenohormesis. Medicines 2019, 6, 6.pl_PL
dc.referencesYao, L.H.; Jiang, Y.M.; Shi, J.; Tomas-Barberan, F.A.; Datta, N.; Singanusong, R.; Chen, S.S. Flavonoids in food and their health benefits. Plant Foods Hum. Nutr. 2004, 59, 113–122.pl_PL
dc.referencesStefanescu, B.E.; Szabo, K.; Mocan, A.; Crisan, G. Phenolic compounds from five Ericaceae species leaves and their related bioavailability and health benefits. Molecules 2019, 24, 2046.pl_PL
dc.referencesCheng, A. Review: Shaping a sustainable food future by rediscovering long-forgotten ancient grains. Plant Sci. 2018, 269, 136–142.pl_PL
dc.referencesHamburger, M. Isatis tinctoria—From the rediscovery of an ancient medicinal plant towards a novel anti-inflammatory phytopharmaceutical. Phytochem. Rev. 2002, 1, 333–344.pl_PL
dc.referencesZao, L.; Pan, F.; Li, Y.; Hao, S.; Mehmood, A.; Wang, Y.; Wang, C. Structure characteristics of flavonoids for heterocyclic aromatic amines inhibition using quantitative structure-activity relationship modelling. Food Bioch. 2020, 44, 13390.pl_PL
dc.referencesLagunin, A.; Filimonov, D.; Poroikov, V. Multi-targeted natural products evaluation based on biological activity prediction with PASS. Curr. Pharm. Des. 2010, 16, 1703–1717.pl_PL
dc.referencesChu, K.O.; Chan, S.-O.; Pang, C.P.; Wang, C.C. Pro-oxidative and antioxidative controls and signalling modification of polyphenolic phytochemicals: Contribution to health promotion and disease prevention. J. Agric. Food Chem. 2014, 62, 4026–4038.pl_PL
dc.referencesStepanchikova, A.V.; Lagunin, A.A.; Filimonov, D.A.; Poroikov, V.V. Prediction of biological activity spectra for substances: Evaluation on the diverse sets of drug-like structures. Curr. Pharm. Des. 2003, 10, 225–233.pl_PL
dc.referencesChilczuk, B.; Marciniak, B.; Stochmal, A.; Pecio, Ł.; Kontek, R.; Jackowska, J.; Materska, M. Anticancer potential and Capsianosides identification in lipophilic fraction of sweet pepper (Capsicum annuum L.). Molecules 2020, 25, 3097.pl_PL
dc.referencesMaksimova, V.; Gudeva, K.L.; Gulaboski, R.; Nieber, K. Co-extracted bioactive compounds in Capsicum fruit extracts prevent the cytotoxic effects of capsaicin on B104 neuroblastoma cells. Braz. J. Pharmacog. 2016, 26, 744–750.pl_PL
dc.referencesMennella, G.; D’Alessandro, A.; Francese, G.; Fontanella, D.; Parisi, M.; Tripodi, P. Occurrence of variable levels of healthpromoting fruit compounds in horn-shaped Italian sweet pepper varieties assessed by a comprehensive approach. J. Sci. Food Agric. 2018, 98, 3280–3289.pl_PL
dc.referencesEstruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.; Corella, D.; Arós, F. Primary prevention of cardiovascular disease with a Mediterranean diet. N. Engl. J. Med. 2013, 368, 1279–1290.pl_PL
dc.referencesPadayatty, S.J.; Katz, A.; Wang, Y.; Eck, P.; Kwon, O.; Lee, J.H. Vitamin C as an antioxidant: Evaluation, of its role in disease prevention. J. Am. Coll. Nutr. 2003, 22, 18–35.pl_PL
dc.referencesGómez-García, M.R.; Ochoa-Alejo, N. Biochemistry and molecular biology of carotenoid biosynthesis in chili peppers (Capsicum spp.). Int. J. Mol. Sci. 2013, 14, 19025–19053.pl_PL
dc.referencesChávez-Mendoza, C.; Sánchez, E.; Carvajal-Millán, E.; Muñoz-Márquez, E.; Guevara-Aguilar, A. Characterization of the nutraceutical quality and antioxidant activity in bell pepper in response to grafting. Molecules 2013, 18, 15689–15703.pl_PL
dc.referencesAmarowicz, R.; Shahidi, F. Antioxidant activity of green tea catechins in a β-carotene-linoleate model system. J. Food Lipids 1995, 2, 47–56.pl_PL
dc.referencesFerysiuk, K.; Wójciak, K.M.; Materska, M.; Chilczuk, B.; Pabich, M. Modification of lipid oxidation and antioxidant capacity in canned refrigerated pork with a nitrite content reduced by half and addition of sweet pepper extract. Int. Food Sci. Technol. 2020, 118, 108738.pl_PL
dc.referencesChilczuk, B.; Materska, M.; Staszowska-Karkut, M.; Pabich, M. Pepper extracts as a source of bioactive substances. Przem. Chem. 2018, 9, 116172.pl_PL
dc.referencesBurda, S.; Oleszek, W. Antioxidant and Antiradical Activities of Flavonoids. J. Agric. Food Chem. 2001, 49, 2774–2779.pl_PL
dc.referencesMuntenau, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021, 22, 3380.pl_PL
dc.referencesKevers, C.; Falkowski, M.; Tabart, J.; Defraigne, J.O.; Dommes, J.; Pincemail, J. Evolution of antioxidant capacity during storage of selected fruits and vegetable. J. Agric. Food Chem. 2007, 55, 8596–8603.pl_PL
dc.referencesAlvarez-Parrilla, E.; Rosa, L.; Amarowicz, R.; Shahidi, F. Antioxidant activity of fresh and processed Jalapeno and Serrano peppers. J. Agric. Food Chem. 2011, 59, 163–173.pl_PL
dc.referencesMaterska, M.; Perucka, I. Antioxidant activity of the main phenolic compounds isolated from hot pepper fruit (Capsicum annuum L.). J. Agric. Food Chem. 2005, 53, 1750–1756.pl_PL
dc.referencesTanaka, Y.; Hosokawa, M.; Miwa, T.; Watanabe, T.; Yazawa, S. Novel loss-of-function putative aminotransferase alleles cause biosynthesis of capsinoids, nonpungent capsaicinoid analogues, in midle pungent chili peppers (Capsicum chinese). J. Agric. Food Chem. 2010, 58, 11762–11767.pl_PL
dc.referencesEsghaei, M.; Ghaffari, H.; Esboei, B.R.; Tapeh, Z.E.; Salim, F.B.; Motevalian, M. Evaluation of Anticancer Activity of Camellia Sinensis in the Caco-2 Colorectal Cancer Cell Line. Asian Pac. J. Cancer Prev. 2018, 19, 1697–1701.pl_PL
dc.referencesKrzyszto ´n-Russjan, J.; Ksi ˛azek, I.; Anuszewska, E. Comparison of MTT and EZ4U assays applied for xenobiotics cytotoxicity ˙ evaluation. Farm. Pol. 2009, 65, 395–402.pl_PL
dc.referencesChen, L.; Hwang, J.E.; Choi, B.; Gu, M.K.; Park, Y.; Kang, Y.H. Antioxidant capacities and cytostatic effect of Korean red pepper (Capsicum annuum L): A screening and in vitro study. J. Soc. Appl. Biol. Chem. 2014, 57, 43–52.pl_PL
dc.referencesJeong, W.Y.; Jin, J.S.; Cho, Y.A.; Lee, J.H.; Park, S.; Jeong, S.W.; Kim, Y.H.; Lim, C.S.; Kim, G.S.; Lee, J.S.; et al. Determination of polyphenols in three Capsicum annuum L. (bell pepper) varieties using high-performance liquid chromatography-tandem mass spectrometry: Their contribution to overall antioxidant and anticancer activity. J. Sep. Sci. 2011, 34, 2967–2974.pl_PL
dc.referencesHernandez-Perez, T.; Gomez-Garcia, M.R.; Valverde, M.E.; Paredes-Lopez, O. Capsicum annuum (hot pepper): An ancient Latin-American crop with outstanding bioactive compounds and nutraceutical potential. A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2972–2993.pl_PL
dc.referencesMaterska, M. Bioactive phenolics of fresh and freeze-dried sweet and semi-spicy pepper fruits (Capsicum annuum L). J. Funct. Foods 2014, 7, 269–277.pl_PL
dc.referencesPascale, R.; Acquavia, M.A.; Cataldi, T.R.; Onzo1, A.; Coviello, D.; Bufo, S.A.; Scrano, L.; Ciriello, R.; Guerrieri1, A.; Bianco, G. Profiling of quercetin glycosides and acyl glycosides in sun-dried pepperoni di Senise peppers (Capsicum annuum L.) by a combination of LC-ESI(-)-MS/MS and polarity prediction in reversed-phase separations. Anal. Bioanal. Chem. 2020, 412, 3005–3015.pl_PL
dc.referencesKelebek, H.; Sevindik, O.; Uzlasir, T.; Selli, A. LC-DAD/ESI MS/MS characterization of fresh and cooked Capia and Aleppo red peppers (Capsicum annuum L.) phenolic profiles. Eur. Food Res. Technol. 2020, 246, 1971–1980.pl_PL
dc.referencesBatiha, G.E.-S.; Alqahtani, A.; Ojo, O.A.; Shaheen, H.M.; Wasef, L.; Elzeiny, M.; Ismail, M.; Shalaby, M.; Murata, T.; ZaragozaBastida, A.; et al. Biological properties, bioactive constituents, and pharmacokinetics of some Capsicum spp. and capsaicinoids. Int. J. Mol. Sci. 2020, 21, 5179.pl_PL
dc.referencesZheng, W.; Wang, S. Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem. 2001, 49, 5165–5170.pl_PL
dc.referencesZhisten, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559.pl_PL
dc.referencesNicolle, C.; Carnat, A.; Fraisse, D.; Lamaison, J.L.; Rock, E.; Michel, H.; Amouroux, P.; Remesy, C. Characterisation and variation of antioxidant micronutrients in lettuce (Lactuca sativa folium). J. Sci. Food Agric. 2004, 84, 2061–2069.pl_PL
dc.referencesConforti, F.; Statti, G.A.; Menichini, F. Chemical and biological variability of hot pepper fruits (Capsicum annuum var. acuminatum L.) in relation to maturity stage. Food Chem. 2007, 102, 1096–1104.pl_PL
dc.referencesAbe, K.; Matsuki, N. Measurement of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) reduction activity and lactate dehydrogenase release using MTT. Neurosci. Res. 2000, 38, 325–329.pl_PL
dc.referencesPerez, J.; Pecio, Ł.; Kowalczyk, M.; Kontek, R.; Gajek, G.; Stopinesk, L.; Mirt, I.; Stichmal, A.; Oleszek, W. Cytotoxic triterpenoids isolated from sweet chestnut heartwood (Castanea sativa) and their health benefits implication. Food Chem. Toxicol. 2017, 109, 863–870.pl_PL
dc.referencesŁudzik, K.; Kustrzepa, K.; Kowalewicz-Kulbat, M.; Kontek, R.; Kontek, B.; ·Wróblewska, A.; Jó´zwiak, M.; Lulo, D. Antimicrobial and cytotoxic properties of bis quaternary ammonium bromides of different spacer length. J. Surfac. Deterg. 2018, 21, 91–99.pl_PL
dc.contributor.authorEmailmalgorzata.materska@up.lublin.plpl_PL
dc.identifier.doi10.3390/molecules26175215
dc.relation.volume17pl_PL
dc.disciplinenauki biologicznepl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 4.0 Międzynarodowe