dc.contributor.author | Brzostek, Anna | |
dc.contributor.author | Minias, Alina | |
dc.contributor.author | Ciszewska, Aneta | |
dc.contributor.author | Gąsior, Filip | |
dc.contributor.author | Pawełczyk, Jakub | |
dc.contributor.author | Dziadek, Jarosław | |
dc.contributor.author | Płociński, Przemysław | |
dc.contributor.author | Dziadek, Bozena | |
dc.contributor.author | Słomka, Marcin | |
dc.contributor.editor | Dieli, Francesco | |
dc.date.accessioned | 2021-11-10T11:55:20Z | |
dc.date.available | 2021-11-10T11:55:20Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Brzostek, A.; Płociński, P.; Minias, A.; Ciszewska, A.; Gąsior, F.; Pawełczyk, J.; Dziadek, B.; Słomka, M.; Dziadek, J. Dissecting the RecA-(In)dependent Response to Mitomycin C in Mycobacterium tuberculosis Using Transcriptional Profiling and Proteomics Analyses. Cells 2021, 10, 1168. https://doi.org/10.3390/cells10051168 | pl_PL |
dc.identifier.uri | http://hdl.handle.net/11089/39750 | |
dc.description | Institutional Review Board Statement: The experimental procedures were approved and conducted
according to guidelines of the appropriate Polish Local Ethics Commission for Experiments on
Animals No. 9 in Lodz (Agreement 9/ŁB87/2018).
Acknowledgments: We thank Jeremy Rock and Sarah Fortune for providing us with the pLJR965
vector and detailed instructions for the generation of Cas9-regulated strains in M. tuberculosis. The
authors thank the mass spectrometry service at the Institute of Biochemistry and Biophysics PAS in
Warsaw for MS analysis. The MS analysis equipment used for the analysis was sponsored in part by
the Centre for Preclinical Research and Technology (CePT), a project cosponsored by the European
Regional Development Fund and Innovative Economy, the National Cohesion Strategy of Poland. | pl_PL |
dc.description.abstract | Mycobacteria exploit at least two independent global systems in response to DNA damage: the LexA/RecA-dependent SOS response and the PafBC-regulated pathway. Intracellular pathogens, such as Mycobacterium tuberculosis, are exposed to oxidative and nitrosative stress during the course of infection while residing inside host macrophages. The current understanding of RecA-independent responses to DNA damage is based on the saprophytic model of Mycobacterium smegmatis, a free-living and nonpathogenic mycobacterium. The aim of the present study was to identify elements of RecA-independent responses to DNA damage in pathogenic intracellular mycobacteria. With the help of global transcriptional profiling, we were able to dissect RecA-dependent and RecA-independent pathways. We profiled the DNA damage responses of an M. tuberculosis strain lacking the recA gene, a strain with an undetectable level of the PafBC regulatory system, and a strain with both systems tuned down simultaneously. RNA-Seq profiling was correlated with the evaluation of cell survival in response to DNA damage to estimate the relevance of each system to the overall sensitivity to genotoxic agents. We also carried out whole-cell proteomics analysis of the M. tuberculosis strains in response to mitomycin C. This approach highlighted that LexA, a well-defined key element of the SOS system, is proteolytically inactivated during RecA-dependent DNA repair, which we found to be transcriptionally repressed in response to DNA-damaging agents in the absence of RecA. Proteomics profiling revealed that AlkB was significantly overproduced in the ΔrecA pafBCCRISPRi/dCas9 strain and that Holliday junction resolvase RuvX was a DNA damage response factor that was significantly upregulated regardless of the presence of functional RecA and PafBC systems, thus falling into a third category of DNA damage factors: RecA- and PafBC-independent. While invisible to the mass spectrometer, the genes encoding alkA, dnaB, and dnaE2 were significantly overexpressed in the ΔrecA pafBCCRISPRi/dCas9 strain at the transcript level. | pl_PL |
dc.description.sponsorship | A.B. was supported by grant “OPUS” from the National Science Centre, Poland, UMO2015/19/B/NZ6/02978. P.P. was supported by grant “OPUS” from the National Science Centre,
Poland, UMO-2019/33/B/NZ1/02770. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | MDPI | pl_PL |
dc.relation.ispartofseries | Cells;10(5) | |
dc.rights | Uznanie autorstwa 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | DNA damage repair | pl_PL |
dc.subject | SOS response | pl_PL |
dc.subject | tuberculosis | pl_PL |
dc.title | Dissecting the RecA-(In)dependent Response to Mitomycin C in Mycobacterium tuberculosis Using Transcriptional Profiling and Proteomics Analyses | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 20 | pl_PL |
dc.contributor.authorAffiliation | Institute of Medical Biology of the Polish Academy of Sciences, Lodowa 106, 93-232 Łódź, Poland | pl_PL |
dc.contributor.authorAffiliation | Institute of Medical Biology of the Polish Academy of Sciences, Lodowa 106, 93-232 Łódź, Poland | pl_PL |
dc.contributor.authorAffiliation | Institute of Medical Biology of the Polish Academy of Sciences, Lodowa 106, 93-232 Łódź, Poland | pl_PL |
dc.contributor.authorAffiliation | Institute of Medical Biology of the Polish Academy of Sciences, Lodowa 106, 93-232 Łódź, Poland | pl_PL |
dc.contributor.authorAffiliation | Institute of Medical Biology of the Polish Academy of Sciences, Lodowa 106, 93-232 Łódź, Poland | pl_PL |
dc.contributor.authorAffiliation | Institute of Medical Biology of the Polish Academy of Sciences, Lodowa 106, 93-232 Łódź, Poland | pl_PL |
dc.contributor.authorAffiliation | Institute of Medical Biology of the Polish Academy of Sciences, Lodowa 106, 93-232 Łódź, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland | pl_PL |
dc.contributor.authorAffiliation | Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 139, 90-235 Łódź, Poland | pl_PL |
dc.identifier.eissn | 2073-4409 | |
dc.references | World Health Organization. Global Tuberculosis Report 2020; World Health Organization: Geneva, Switzerland, 2020; ISBN 978-92- 4-001313-1. | pl_PL |
dc.references | Dos Vultos, T.; Mestre, O.; Tonjum, T.; Gicquel, B. DNA repair in Mycobacterium tuberculosis revisited. FEMS Microbiol. Rev. 2009, 33, 471–487. | pl_PL |
dc.references | Manina, G.; Griego, A.; Singh, L.K.; McKinney, J.D.; Dhar, N. Preexisting variation in DNA damage response predicts the fate of single mycobacteria under stress. EMBO J. 2019, 38, 1–19. | pl_PL |
dc.references | Płocinska, R.; Korycka-Machala, M.; Plocinski, P.; Dziadek, J. Mycobacterial DNA replication as a target for antituberculosis drug discovery. Curr. Top. Med. Chem. 2017, 17, 2129–2142. | pl_PL |
dc.references | Warner, D.F.; Ndwandwe, D.E.; Abrahams, G.L.; Kana, B.D.; Machowski, E.E.; Venclovas, C.; Mizrahi, V. Essential roles for imuA ˇ 0 - and imuB-encoded accessory factors in DnaE2-dependent mutagenesis in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 2010, 107, 13093–13098. | pl_PL |
dc.references | Castañeda-García, A.; Prieto, A.I.; Rodríguez-Beltrán, J.; Alonso, N.; Cantillon, D.; Costas, C.; Pérez-Lago, L.; Zegeye, E.D.; Herranz, M.; Ploci ´nski, P.; et al. A non-canonical mismatch repair pathway in prokaryotes. Nat. Commun. 2017, 8. | pl_PL |
dc.references | Płoci ´nski, P.; Brissett, N.C.; Bianchi, J.; Brzostek, A.; Korycka-Machała, M.; Dziembowski, A.; Dziadek, J.; Doherty, A.J. DNA Ligase C and Prim-PolC participate in base excision repair in mycobacteria. Nat. Commun. 2017, 8. | pl_PL |
dc.references | Gupta, R.; Shuman, S.; Glickman, M.S. RecF and RecR play critical roles in the homologous recombination and single-strand annealing pathways of mycobacteria. J. Bacteriol. 2015, 197, 3121–3132. | pl_PL |
dc.references | Gupta, R.; Unciuleac, M.-C.; Shuman, S.; Glickman, M.S. Homologous recombination mediated by the mycobacterial AdnAB helicase without end resection by the AdnAB nucleases. Nucleic Acids Res. 2017, 45, 762–774. | pl_PL |
dc.references | Singh, P.; Patil, K.N.; Khanduja, J.S.; Kumar, P.S.; Williams, A.; Rossi, F.; Rizzi, M.; Davis, E.O.; Muniyappa, K. Mycobacterium tuberculosis UvrD1 and UvrA proteins suppress DNA strand exchange promoted by cognate and noncognate RecA proteins. Biochemistry 2010, 49, 4872–4883. | pl_PL |
dc.references | Wipperman, M.F.; Heaton, B.E.; Nautiyal, A.; Adefisayo, O.; Evans, H.; Gupta, R.; van Ditmarsch, D.; Soni, R.; Hendrickson, R.; Johnson, J.; et al. Mycobacterial mutagenesis and drug resistance are controlled by phosphorylation- and cardiolipin-mediated inhibition of the RecA coprotease. Mol. Cell 2018, 72, 152–161.e7. | pl_PL |
dc.references | Gopaul, K.K.; Brooks, P.C.; Prost, J.-F.; Davis, E.O. Characterization of the two Mycobacterium tuberculosis recA promoters. J. Bacteriol. 2003, 185, 6005–6015. | pl_PL |
dc.references | Fudrini Olivencia, B.; Müller, A.U.; Roschitzki, B.; Burger, S.; Weber-Ban, E.; Imkamp, F. Mycobacterium smegmatis PafBC is involved in regulation of DNA damage response. Sci. Rep. 2017, 7. | pl_PL |
dc.references | Müller, A.U.; Imkamp, F.; Weber-Ban, E. The mycobacterial LexA/RecA-independent DNA damage response is controlled by PafBC and the pup-proteasome system. Cell Rep. 2018, 23, 3551–3564. | pl_PL |
dc.references | Brzostek, A.; Szulc, I.; Klink, M.; Brzezinska, M.; Sulowska, Z.; Dziadek, J. Either non-homologous ends joining or homologous recombination is required to repair double-strand breaks in the genome of macrophage-internalized Mycobacterium tuberculosis. PLoS ONE 2014, 9, e92799. | pl_PL |
dc.references | Rock, J.M.; Hopkins, F.F.; Chavez, A.; Diallo, M.; Chase, M.R.; Gerrick, E.R.; Pritchard, J.R.; Church, G.M.; Rubin, E.J.; Sassetti, C.M.; et al. Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform. Nat. Microbiol. 2017, 2. | pl_PL |
dc.references | Sheffield, P.; Garrard, S.; Derewenda, Z. Overcoming expression and purification problems of RhoGDI using a family of “parallel” expression vectors. Protein Expr. Purif. 1999, 15, 34–39. | pl_PL |
dc.references | Korycka-Machała, M.; Pawełczyk, J.; Borówka, P.; Dziadek, B.; Brzostek, A.; Kawka, M.; Bekier, A.; Rykowski, S.; Olejniczak, A.B.; Strapagiel, D.; et al. PPE51 Is involved in the uptake of disaccharides by Mycobacterium tuberculosis. Cells 2020, 9, 603. | pl_PL |
dc.references | Korycka-Machala, M.; Rychta, E.; Brzostek, A.; Sayer, H.R.; Rumijowska-Galewicz, A.; Bowater, R.P.; Dziadek, J. Evaluation of NAD(+)-dependent DNA ligase of mycobacteria as a potential target for antibiotics. Antimicrob. Agents Chemother. 2007, 51, 2888–2897. | pl_PL |
dc.references | Pawelczyk, J.; Brzostek, A.; Kremer, L.; Dziadek, B.; Rumijowska-Galewicz, A.; Fiolka, M.; Dziadek, J. AccD6, a key carboxyltransferase essential for mycolic acid synthesis in Mycobacterium tuberculosis, is dispensable in a nonpathogenic strain. J. Bacteriol. 2011, 193, 6960–6972. | pl_PL |
dc.references | Płoci ´nski, P.; Macios, M.; Houghton, J.; Niemiec, E.; Płoci ´nska, R.; Brzostek, A.; Słomka, M.; Dziadek, J.; Young, D.; Dziembowski, A. Proteomic and transcriptomic experiments reveal an essential role of RNA degradosome complexes in shaping the transcriptome of Mycobacterium tuberculosis. Nucleic Acids Res. 2019, 47, 5892–5905. | pl_PL |
dc.references | Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17. | pl_PL |
dc.references | Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. | pl_PL |
dc.references | Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. 1000 Genome Project Data Processing Subgroup. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. | pl_PL |
dc.references | Powell, D. Degust: Powerfull and User Friendly Front-End Data Analsysis, Visualisation and Exploratory Tool for RNASequencing. Available online: https://github.com/drpowell/degust (accessed on 22 March 2021). | pl_PL |
dc.references | Góralczyk-Bi ´nkowska, A.; Jasi ´nska, A.; Długo ´nski, A.; Płoci ´nski, P.; Długo ´nski, J. Laccase activity of the ascomycete fungus Nectriella pironii and innovative strategies for its production on leaf litter of an urban park. PLoS ONE 2020, 15, e0231453. | pl_PL |
dc.references | Minias, A.; Minias, P.; Czubat, B.; Dziadek, J. Purifying selective pressure suggests the functionality of a vitamin B12 biosynthesis pathway in a global population of Mycobacterium tuberculosis. Genome Biol. Evol. 2018, 10, 2326–2337. | pl_PL |
dc.references | Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. | pl_PL |
dc.references | Korycka-Machala, M.; Brzostek, A.; Rozalska, S.; Rumijowska-Galewicz, A.; Dziedzic, R.; Bowater, R.; Dziadek, J. Distinct DNA repair pathways involving RecA and nonhomologous end joining in Mycobacterium smegmatis. FEMS Microbiol. Lett. 2006, 258, 83–91. | pl_PL |
dc.references | Smollett, K.L.; Smith, K.M.; Kahramanoglou, C.; Arnvig, K.B.; Buxton, R.S.; Davis, E.O. Global analysis of the regulon of the transcriptional repressor LexA, a key component of SOS response in Mycobacterium tuberculosis. J. Biol. Chem. 2012, 287, 22004–22014. | pl_PL |
dc.references | Rand, L.; Hinds, J.; Springer, B.; Sander, P.; Buxton, R.S.; Davis, E.O. The majority of inducible DNA repair genes in Mycobacterium tuberculosis are induced independently of RecA. Mol. Microbiol. 2003, 50, 1031–1042. | pl_PL |
dc.references | Dawson, L.F.; Dillury, J.; Davis, E.O. RecA-Independent DNA damage induction of Mycobacterium tuberculosis ruvC despite an appropriately located SOS box. J. Bacteriol. 2010, 192, 599–603. | pl_PL |
dc.references | Minch, K.J.; Rustad, T.R.; Peterson, E.J.R.; Winkler, J.; Reiss, D.J.; Ma, S.; Hickey, M.; Brabant, W.; Morrison, B.; Turkarslan, S.; et al. The DNA-binding network of Mycobacterium tuberculosis. Nat. Commun. 2015, 6. | pl_PL |
dc.references | Yellaboina, S.; Ranjan, S.; Vindal, V.; Ranjan, A. Comparative analysis of iron regulated genes in mycobacteria. FEBS Lett. 2006, 580, 2567–2576. | pl_PL |
dc.references | Rodriguez, G.M.; Voskuil, M.I.; Gold, B.; Schoolnik, G.K.; Smith, I. ideR, an essential gene in Mycobacterium tuberculosis: Role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect. Immun. 2002, 70, 3371–3381. | pl_PL |
dc.references | Li, X.; Jiang, X.; Xu, M.; Fang, Y.; Wang, Y.; Sun, G.; Guo, J. Identification of stress-responsive transcription factors with protein-bound Escherichia coli genomic DNA libraries. AMB Express 2020, 10. | pl_PL |
dc.references | Sun, X.; Zhang, L.; Jiang, J.; Ng, M.; Cui, Z.; Mai, J.; Ahn, S.K.; Liu, J.; Zhang, J.; Liu, J.; et al. Transcription factors Rv0081 and Rv3334 connect the early and the enduring hypoxic response of Mycobacterium tuberculosis. Virulence 2018, 9, 1468–1482. | pl_PL |
dc.references | Davis, E.O.; Dullaghan, E.M.; Rand, L. Definition of the mycobacterial SOS box and use to identify LexA-regulated genes in Mycobacterium tuberculosis. J. Bacteriol. 2002, 184, 3287–3295. | pl_PL |
dc.references | Mo, C.Y.; Birdwell, L.D.; Kohli, R.M. Specificity determinants for autoproteolysis of LexA, a key regulator of bacterial SOS mutagenesis. Biochemistry 2014, 53, 3158–3168. | pl_PL |
dc.references | Liu, J.; Ehmsen, K.T.; Heyer, W.-D.; Morrical, S.W. Presynaptic filament dynamics in homologous recombination and DNA repair. Crit. Rev. Biochem. Mol. Biol. 2011, 46, 240–270. | pl_PL |
dc.references | Gataulin, D.V.; Carey, J.N.; Li, J.; Shah, P.; Grubb, J.T.; Bishop, D.K. The ATPase activity of E. coli RecA prevents accumulation of toxic complexes formed by erroneous binding to undamaged double stranded DNA. Nucleic Acids Res. 2018, 46, 9510–9523. | pl_PL |
dc.references | Zahradka, K.; Buljubaši´c, M.; Petranovi´c, M.; Zahradka, D. Roles of ExoI and SbcCD nucleases in “reckless” DNA degradation in recA mutants of Escherichia coli. J. Bacteriol. 2009, 191, 1677–1687. | pl_PL |
dc.references | Webb, B.L.; Cox, M.M.; Inman, R.B. Recombinational DNA repair: The RecF and RecR proteins limit the extension of RecA filaments beyond single-strand DNA gaps. Cell 1997, 91, 347–356. | pl_PL |
dc.references | Gupta, R.; Ryzhikov, M.; Koroleva, O.; Unciuleac, M.; Shuman, S.; Korolev, S.; Glickman, M.S. A dual role for mycobacterial RecO in RecA-dependent homologous recombination and RecA-independent single-strand annealing. Nucleic Acids Res. 2013, 41, 2284–2295. | pl_PL |
dc.references | Dullaghan, E.M.; Brooks, P.C.; Davis, E.O. The role of multiple SOS boxes upstream of the Mycobacterium tuberculosis lexA gene—identification of a novel DNA-damage-inducible gene. Microbiology 2002, 148, 3609–3615. | pl_PL |
dc.references | Cheng, Y.; Yang, R.; Lyu, M.; Wang, S.; Liu, X.; Wen, Y.; Song, Y.; Li, J.; Chen, Z. IdeR, a DtxR family iron response regulator, controls iron homeostasis, morphological differentiation, secondary metabolism, and the oxidative stress response in Streptomyces avermitilis. Appl. Environ. Microbiol. 2018, 84. | pl_PL |
dc.references | Pandey, R.; Rodriguez, G.M. IdeR is required for iron homeostasis and virulence in Mycobacterium tuberculosis. Mol. Microbiol. 2014, 91, 98–109. | pl_PL |
dc.references | Lee, H.-N.; Lee, N.-O.; Han, S.J.; Ko, I.-J.; Oh, J.-I. Regulation of the ahpC gene encoding alkyl hydroperoxide reductase in Mycobacterium smegmatis. PLoS ONE 2014, 9, e111680. | pl_PL |
dc.references | Rustad, T.R.; Minch, K.J.; Ma, S.; Winkler, J.K.; Hobbs, S.; Hickey, M.; Brabant, W.; Turkarslan, S.; Price, N.D.; Baliga, N.S.; et al. Mapping and manipulating the Mycobacterium tuberculosis transcriptome using a transcription factor overexpression-derived regulatory network. Genome Biol. 2014, 15. | pl_PL |
dc.references | Iacobino, A.; Piccaro, G.; Pardini, M.; Fattorini, L.; Giannoni, F. Moxifloxacin activates the sos response in Mycobacterium tuberculosis in a dose-and time-dependent manner. Microorganisms 2021, 9, 255. | pl_PL |
dc.references | Jagielski, T.; Bakuła, Z.; Brzostek, A.; Minias, A.; Stachowiak, R.; Kalita, J.; Napiórkowska, A.; Augustynowicz-Kope´c, E.; Zaczek, ˙ A.; Vasiliauskiene, E.; et al. Characterization of mutations conferring resistance to rifampin in Mycobacterium tuberculosis clinical strains. Antimicrob. Agents Chemother. 2018, 62. | pl_PL |
dc.references | Gough, J. Convergent evolution of domain architectures (is rare). Bioinformatics 2005, 21, 1464–1471. | pl_PL |
dc.identifier.doi | 10.3390/cells10051168 | |
dc.relation.volume | 1168 | pl_PL |
dc.discipline | nauki biologiczne | pl_PL |