Show simple item record

dc.contributor.authorBrzostek, Anna
dc.contributor.authorMinias, Alina
dc.contributor.authorCiszewska, Aneta
dc.contributor.authorGąsior, Filip
dc.contributor.authorPawełczyk, Jakub
dc.contributor.authorDziadek, Jarosław
dc.contributor.authorPłociński, Przemysław
dc.contributor.authorDziadek, Bozena
dc.contributor.authorSłomka, Marcin
dc.contributor.editorDieli, Francesco
dc.date.accessioned2021-11-10T11:55:20Z
dc.date.available2021-11-10T11:55:20Z
dc.date.issued2021
dc.identifier.citationBrzostek, A.; Płociński, P.; Minias, A.; Ciszewska, A.; Gąsior, F.; Pawełczyk, J.; Dziadek, B.; Słomka, M.; Dziadek, J. Dissecting the RecA-(In)dependent Response to Mitomycin C in Mycobacterium tuberculosis Using Transcriptional Profiling and Proteomics Analyses. Cells 2021, 10, 1168. https://doi.org/10.3390/cells10051168pl_PL
dc.identifier.urihttp://hdl.handle.net/11089/39750
dc.descriptionInstitutional Review Board Statement: The experimental procedures were approved and conducted according to guidelines of the appropriate Polish Local Ethics Commission for Experiments on Animals No. 9 in Lodz (Agreement 9/ŁB87/2018). Acknowledgments: We thank Jeremy Rock and Sarah Fortune for providing us with the pLJR965 vector and detailed instructions for the generation of Cas9-regulated strains in M. tuberculosis. The authors thank the mass spectrometry service at the Institute of Biochemistry and Biophysics PAS in Warsaw for MS analysis. The MS analysis equipment used for the analysis was sponsored in part by the Centre for Preclinical Research and Technology (CePT), a project cosponsored by the European Regional Development Fund and Innovative Economy, the National Cohesion Strategy of Poland.pl_PL
dc.description.abstractMycobacteria exploit at least two independent global systems in response to DNA damage: the LexA/RecA-dependent SOS response and the PafBC-regulated pathway. Intracellular pathogens, such as Mycobacterium tuberculosis, are exposed to oxidative and nitrosative stress during the course of infection while residing inside host macrophages. The current understanding of RecA-independent responses to DNA damage is based on the saprophytic model of Mycobacterium smegmatis, a free-living and nonpathogenic mycobacterium. The aim of the present study was to identify elements of RecA-independent responses to DNA damage in pathogenic intracellular mycobacteria. With the help of global transcriptional profiling, we were able to dissect RecA-dependent and RecA-independent pathways. We profiled the DNA damage responses of an M. tuberculosis strain lacking the recA gene, a strain with an undetectable level of the PafBC regulatory system, and a strain with both systems tuned down simultaneously. RNA-Seq profiling was correlated with the evaluation of cell survival in response to DNA damage to estimate the relevance of each system to the overall sensitivity to genotoxic agents. We also carried out whole-cell proteomics analysis of the M. tuberculosis strains in response to mitomycin C. This approach highlighted that LexA, a well-defined key element of the SOS system, is proteolytically inactivated during RecA-dependent DNA repair, which we found to be transcriptionally repressed in response to DNA-damaging agents in the absence of RecA. Proteomics profiling revealed that AlkB was significantly overproduced in the ΔrecA pafBCCRISPRi/dCas9 strain and that Holliday junction resolvase RuvX was a DNA damage response factor that was significantly upregulated regardless of the presence of functional RecA and PafBC systems, thus falling into a third category of DNA damage factors: RecA- and PafBC-independent. While invisible to the mass spectrometer, the genes encoding alkA, dnaB, and dnaE2 were significantly overexpressed in the ΔrecA pafBCCRISPRi/dCas9 strain at the transcript level.pl_PL
dc.description.sponsorshipA.B. was supported by grant “OPUS” from the National Science Centre, Poland, UMO2015/19/B/NZ6/02978. P.P. was supported by grant “OPUS” from the National Science Centre, Poland, UMO-2019/33/B/NZ1/02770.pl_PL
dc.language.isoenpl_PL
dc.publisherMDPIpl_PL
dc.relation.ispartofseriesCells;10(5)
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectDNA damage repairpl_PL
dc.subjectSOS responsepl_PL
dc.subjecttuberculosispl_PL
dc.titleDissecting the RecA-(In)dependent Response to Mitomycin C in Mycobacterium tuberculosis Using Transcriptional Profiling and Proteomics Analysespl_PL
dc.typeArticlepl_PL
dc.page.number20pl_PL
dc.contributor.authorAffiliationInstitute of Medical Biology of the Polish Academy of Sciences, Lodowa 106, 93-232 Łódź, Polandpl_PL
dc.contributor.authorAffiliationInstitute of Medical Biology of the Polish Academy of Sciences, Lodowa 106, 93-232 Łódź, Polandpl_PL
dc.contributor.authorAffiliationInstitute of Medical Biology of the Polish Academy of Sciences, Lodowa 106, 93-232 Łódź, Polandpl_PL
dc.contributor.authorAffiliationInstitute of Medical Biology of the Polish Academy of Sciences, Lodowa 106, 93-232 Łódź, Polandpl_PL
dc.contributor.authorAffiliationInstitute of Medical Biology of the Polish Academy of Sciences, Lodowa 106, 93-232 Łódź, Polandpl_PL
dc.contributor.authorAffiliationInstitute of Medical Biology of the Polish Academy of Sciences, Lodowa 106, 93-232 Łódź, Polandpl_PL
dc.contributor.authorAffiliationInstitute of Medical Biology of the Polish Academy of Sciences, Lodowa 106, 93-232 Łódź, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Polandpl_PL
dc.contributor.authorAffiliationBiobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 139, 90-235 Łódź, Polandpl_PL
dc.identifier.eissn2073-4409
dc.referencesWorld Health Organization. Global Tuberculosis Report 2020; World Health Organization: Geneva, Switzerland, 2020; ISBN 978-92- 4-001313-1.pl_PL
dc.referencesDos Vultos, T.; Mestre, O.; Tonjum, T.; Gicquel, B. DNA repair in Mycobacterium tuberculosis revisited. FEMS Microbiol. Rev. 2009, 33, 471–487.pl_PL
dc.referencesManina, G.; Griego, A.; Singh, L.K.; McKinney, J.D.; Dhar, N. Preexisting variation in DNA damage response predicts the fate of single mycobacteria under stress. EMBO J. 2019, 38, 1–19.pl_PL
dc.referencesPłocinska, R.; Korycka-Machala, M.; Plocinski, P.; Dziadek, J. Mycobacterial DNA replication as a target for antituberculosis drug discovery. Curr. Top. Med. Chem. 2017, 17, 2129–2142.pl_PL
dc.referencesWarner, D.F.; Ndwandwe, D.E.; Abrahams, G.L.; Kana, B.D.; Machowski, E.E.; Venclovas, C.; Mizrahi, V. Essential roles for imuA ˇ 0 - and imuB-encoded accessory factors in DnaE2-dependent mutagenesis in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 2010, 107, 13093–13098.pl_PL
dc.referencesCastañeda-García, A.; Prieto, A.I.; Rodríguez-Beltrán, J.; Alonso, N.; Cantillon, D.; Costas, C.; Pérez-Lago, L.; Zegeye, E.D.; Herranz, M.; Ploci ´nski, P.; et al. A non-canonical mismatch repair pathway in prokaryotes. Nat. Commun. 2017, 8.pl_PL
dc.referencesPłoci ´nski, P.; Brissett, N.C.; Bianchi, J.; Brzostek, A.; Korycka-Machała, M.; Dziembowski, A.; Dziadek, J.; Doherty, A.J. DNA Ligase C and Prim-PolC participate in base excision repair in mycobacteria. Nat. Commun. 2017, 8.pl_PL
dc.referencesGupta, R.; Shuman, S.; Glickman, M.S. RecF and RecR play critical roles in the homologous recombination and single-strand annealing pathways of mycobacteria. J. Bacteriol. 2015, 197, 3121–3132.pl_PL
dc.referencesGupta, R.; Unciuleac, M.-C.; Shuman, S.; Glickman, M.S. Homologous recombination mediated by the mycobacterial AdnAB helicase without end resection by the AdnAB nucleases. Nucleic Acids Res. 2017, 45, 762–774.pl_PL
dc.referencesSingh, P.; Patil, K.N.; Khanduja, J.S.; Kumar, P.S.; Williams, A.; Rossi, F.; Rizzi, M.; Davis, E.O.; Muniyappa, K. Mycobacterium tuberculosis UvrD1 and UvrA proteins suppress DNA strand exchange promoted by cognate and noncognate RecA proteins. Biochemistry 2010, 49, 4872–4883.pl_PL
dc.referencesWipperman, M.F.; Heaton, B.E.; Nautiyal, A.; Adefisayo, O.; Evans, H.; Gupta, R.; van Ditmarsch, D.; Soni, R.; Hendrickson, R.; Johnson, J.; et al. Mycobacterial mutagenesis and drug resistance are controlled by phosphorylation- and cardiolipin-mediated inhibition of the RecA coprotease. Mol. Cell 2018, 72, 152–161.e7.pl_PL
dc.referencesGopaul, K.K.; Brooks, P.C.; Prost, J.-F.; Davis, E.O. Characterization of the two Mycobacterium tuberculosis recA promoters. J. Bacteriol. 2003, 185, 6005–6015.pl_PL
dc.referencesFudrini Olivencia, B.; Müller, A.U.; Roschitzki, B.; Burger, S.; Weber-Ban, E.; Imkamp, F. Mycobacterium smegmatis PafBC is involved in regulation of DNA damage response. Sci. Rep. 2017, 7.pl_PL
dc.referencesMüller, A.U.; Imkamp, F.; Weber-Ban, E. The mycobacterial LexA/RecA-independent DNA damage response is controlled by PafBC and the pup-proteasome system. Cell Rep. 2018, 23, 3551–3564.pl_PL
dc.referencesBrzostek, A.; Szulc, I.; Klink, M.; Brzezinska, M.; Sulowska, Z.; Dziadek, J. Either non-homologous ends joining or homologous recombination is required to repair double-strand breaks in the genome of macrophage-internalized Mycobacterium tuberculosis. PLoS ONE 2014, 9, e92799.pl_PL
dc.referencesRock, J.M.; Hopkins, F.F.; Chavez, A.; Diallo, M.; Chase, M.R.; Gerrick, E.R.; Pritchard, J.R.; Church, G.M.; Rubin, E.J.; Sassetti, C.M.; et al. Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform. Nat. Microbiol. 2017, 2.pl_PL
dc.referencesSheffield, P.; Garrard, S.; Derewenda, Z. Overcoming expression and purification problems of RhoGDI using a family of “parallel” expression vectors. Protein Expr. Purif. 1999, 15, 34–39.pl_PL
dc.referencesKorycka-Machała, M.; Pawełczyk, J.; Borówka, P.; Dziadek, B.; Brzostek, A.; Kawka, M.; Bekier, A.; Rykowski, S.; Olejniczak, A.B.; Strapagiel, D.; et al. PPE51 Is involved in the uptake of disaccharides by Mycobacterium tuberculosis. Cells 2020, 9, 603.pl_PL
dc.referencesKorycka-Machala, M.; Rychta, E.; Brzostek, A.; Sayer, H.R.; Rumijowska-Galewicz, A.; Bowater, R.P.; Dziadek, J. Evaluation of NAD(+)-dependent DNA ligase of mycobacteria as a potential target for antibiotics. Antimicrob. Agents Chemother. 2007, 51, 2888–2897.pl_PL
dc.referencesPawelczyk, J.; Brzostek, A.; Kremer, L.; Dziadek, B.; Rumijowska-Galewicz, A.; Fiolka, M.; Dziadek, J. AccD6, a key carboxyltransferase essential for mycolic acid synthesis in Mycobacterium tuberculosis, is dispensable in a nonpathogenic strain. J. Bacteriol. 2011, 193, 6960–6972.pl_PL
dc.referencesPłoci ´nski, P.; Macios, M.; Houghton, J.; Niemiec, E.; Płoci ´nska, R.; Brzostek, A.; Słomka, M.; Dziadek, J.; Young, D.; Dziembowski, A. Proteomic and transcriptomic experiments reveal an essential role of RNA degradosome complexes in shaping the transcriptome of Mycobacterium tuberculosis. Nucleic Acids Res. 2019, 47, 5892–5905.pl_PL
dc.referencesMartin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17.pl_PL
dc.referencesLangmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359.pl_PL
dc.referencesLi, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. 1000 Genome Project Data Processing Subgroup. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079.pl_PL
dc.referencesPowell, D. Degust: Powerfull and User Friendly Front-End Data Analsysis, Visualisation and Exploratory Tool for RNASequencing. Available online: https://github.com/drpowell/degust (accessed on 22 March 2021).pl_PL
dc.referencesGóralczyk-Bi ´nkowska, A.; Jasi ´nska, A.; Długo ´nski, A.; Płoci ´nski, P.; Długo ´nski, J. Laccase activity of the ascomycete fungus Nectriella pironii and innovative strategies for its production on leaf litter of an urban park. PLoS ONE 2020, 15, e0231453.pl_PL
dc.referencesMinias, A.; Minias, P.; Czubat, B.; Dziadek, J. Purifying selective pressure suggests the functionality of a vitamin B12 biosynthesis pathway in a global population of Mycobacterium tuberculosis. Genome Biol. Evol. 2018, 10, 2326–2337.pl_PL
dc.referencesKearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649.pl_PL
dc.referencesKorycka-Machala, M.; Brzostek, A.; Rozalska, S.; Rumijowska-Galewicz, A.; Dziedzic, R.; Bowater, R.; Dziadek, J. Distinct DNA repair pathways involving RecA and nonhomologous end joining in Mycobacterium smegmatis. FEMS Microbiol. Lett. 2006, 258, 83–91.pl_PL
dc.referencesSmollett, K.L.; Smith, K.M.; Kahramanoglou, C.; Arnvig, K.B.; Buxton, R.S.; Davis, E.O. Global analysis of the regulon of the transcriptional repressor LexA, a key component of SOS response in Mycobacterium tuberculosis. J. Biol. Chem. 2012, 287, 22004–22014.pl_PL
dc.referencesRand, L.; Hinds, J.; Springer, B.; Sander, P.; Buxton, R.S.; Davis, E.O. The majority of inducible DNA repair genes in Mycobacterium tuberculosis are induced independently of RecA. Mol. Microbiol. 2003, 50, 1031–1042.pl_PL
dc.referencesDawson, L.F.; Dillury, J.; Davis, E.O. RecA-Independent DNA damage induction of Mycobacterium tuberculosis ruvC despite an appropriately located SOS box. J. Bacteriol. 2010, 192, 599–603.pl_PL
dc.referencesMinch, K.J.; Rustad, T.R.; Peterson, E.J.R.; Winkler, J.; Reiss, D.J.; Ma, S.; Hickey, M.; Brabant, W.; Morrison, B.; Turkarslan, S.; et al. The DNA-binding network of Mycobacterium tuberculosis. Nat. Commun. 2015, 6.pl_PL
dc.referencesYellaboina, S.; Ranjan, S.; Vindal, V.; Ranjan, A. Comparative analysis of iron regulated genes in mycobacteria. FEBS Lett. 2006, 580, 2567–2576.pl_PL
dc.referencesRodriguez, G.M.; Voskuil, M.I.; Gold, B.; Schoolnik, G.K.; Smith, I. ideR, an essential gene in Mycobacterium tuberculosis: Role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect. Immun. 2002, 70, 3371–3381.pl_PL
dc.referencesLi, X.; Jiang, X.; Xu, M.; Fang, Y.; Wang, Y.; Sun, G.; Guo, J. Identification of stress-responsive transcription factors with protein-bound Escherichia coli genomic DNA libraries. AMB Express 2020, 10.pl_PL
dc.referencesSun, X.; Zhang, L.; Jiang, J.; Ng, M.; Cui, Z.; Mai, J.; Ahn, S.K.; Liu, J.; Zhang, J.; Liu, J.; et al. Transcription factors Rv0081 and Rv3334 connect the early and the enduring hypoxic response of Mycobacterium tuberculosis. Virulence 2018, 9, 1468–1482.pl_PL
dc.referencesDavis, E.O.; Dullaghan, E.M.; Rand, L. Definition of the mycobacterial SOS box and use to identify LexA-regulated genes in Mycobacterium tuberculosis. J. Bacteriol. 2002, 184, 3287–3295.pl_PL
dc.referencesMo, C.Y.; Birdwell, L.D.; Kohli, R.M. Specificity determinants for autoproteolysis of LexA, a key regulator of bacterial SOS mutagenesis. Biochemistry 2014, 53, 3158–3168.pl_PL
dc.referencesLiu, J.; Ehmsen, K.T.; Heyer, W.-D.; Morrical, S.W. Presynaptic filament dynamics in homologous recombination and DNA repair. Crit. Rev. Biochem. Mol. Biol. 2011, 46, 240–270.pl_PL
dc.referencesGataulin, D.V.; Carey, J.N.; Li, J.; Shah, P.; Grubb, J.T.; Bishop, D.K. The ATPase activity of E. coli RecA prevents accumulation of toxic complexes formed by erroneous binding to undamaged double stranded DNA. Nucleic Acids Res. 2018, 46, 9510–9523.pl_PL
dc.referencesZahradka, K.; Buljubaši´c, M.; Petranovi´c, M.; Zahradka, D. Roles of ExoI and SbcCD nucleases in “reckless” DNA degradation in recA mutants of Escherichia coli. J. Bacteriol. 2009, 191, 1677–1687.pl_PL
dc.referencesWebb, B.L.; Cox, M.M.; Inman, R.B. Recombinational DNA repair: The RecF and RecR proteins limit the extension of RecA filaments beyond single-strand DNA gaps. Cell 1997, 91, 347–356.pl_PL
dc.referencesGupta, R.; Ryzhikov, M.; Koroleva, O.; Unciuleac, M.; Shuman, S.; Korolev, S.; Glickman, M.S. A dual role for mycobacterial RecO in RecA-dependent homologous recombination and RecA-independent single-strand annealing. Nucleic Acids Res. 2013, 41, 2284–2295.pl_PL
dc.referencesDullaghan, E.M.; Brooks, P.C.; Davis, E.O. The role of multiple SOS boxes upstream of the Mycobacterium tuberculosis lexA gene—identification of a novel DNA-damage-inducible gene. Microbiology 2002, 148, 3609–3615.pl_PL
dc.referencesCheng, Y.; Yang, R.; Lyu, M.; Wang, S.; Liu, X.; Wen, Y.; Song, Y.; Li, J.; Chen, Z. IdeR, a DtxR family iron response regulator, controls iron homeostasis, morphological differentiation, secondary metabolism, and the oxidative stress response in Streptomyces avermitilis. Appl. Environ. Microbiol. 2018, 84.pl_PL
dc.referencesPandey, R.; Rodriguez, G.M. IdeR is required for iron homeostasis and virulence in Mycobacterium tuberculosis. Mol. Microbiol. 2014, 91, 98–109.pl_PL
dc.referencesLee, H.-N.; Lee, N.-O.; Han, S.J.; Ko, I.-J.; Oh, J.-I. Regulation of the ahpC gene encoding alkyl hydroperoxide reductase in Mycobacterium smegmatis. PLoS ONE 2014, 9, e111680.pl_PL
dc.referencesRustad, T.R.; Minch, K.J.; Ma, S.; Winkler, J.K.; Hobbs, S.; Hickey, M.; Brabant, W.; Turkarslan, S.; Price, N.D.; Baliga, N.S.; et al. Mapping and manipulating the Mycobacterium tuberculosis transcriptome using a transcription factor overexpression-derived regulatory network. Genome Biol. 2014, 15.pl_PL
dc.referencesIacobino, A.; Piccaro, G.; Pardini, M.; Fattorini, L.; Giannoni, F. Moxifloxacin activates the sos response in Mycobacterium tuberculosis in a dose-and time-dependent manner. Microorganisms 2021, 9, 255.pl_PL
dc.referencesJagielski, T.; Bakuła, Z.; Brzostek, A.; Minias, A.; Stachowiak, R.; Kalita, J.; Napiórkowska, A.; Augustynowicz-Kope´c, E.; Zaczek, ˙ A.; Vasiliauskiene, E.; et al. Characterization of mutations conferring resistance to rifampin in Mycobacterium tuberculosis clinical strains. Antimicrob. Agents Chemother. 2018, 62.pl_PL
dc.referencesGough, J. Convergent evolution of domain architectures (is rare). Bioinformatics 2005, 21, 1464–1471.pl_PL
dc.identifier.doi10.3390/cells10051168
dc.relation.volume1168pl_PL
dc.disciplinenauki biologicznepl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Uznanie autorstwa 4.0 Międzynarodowe