Show simple item record

dc.contributor.authorChen, Jinsheng
dc.contributor.authorvan Ditmarsch, Hans
dc.contributor.authorGreco, Giuseppe
dc.contributor.authorTzimoulis, Apostolos
dc.description.abstractWe introduce a class of neighbourhood frames for graded modal logic embedding Kripke frames into neighbourhood frames. This class of neighbourhood frames is shown to be first-order definable but not modally definable. We also obtain a new definition of graded bisimulation with respect to Kripke frames by modifying the definition of monotonic bisimulation.en
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;3en
dc.subjectGraded modal logicen
dc.subjectneighbourhood framesen
dc.titleNeighbourhood Semantics for Graded Modal Logicen
dc.contributor.authorAffiliationChen, Jinsheng - Zhejiang University, Department of Philosophyen
dc.contributor.authorAffiliationvan Ditmarsch, Hans - LORIA, CNRS, University of Lorraineen
dc.contributor.authorAffiliationGreco, Giuseppe - Vrije Universiteit Amsterdam, School of Business and Economics, Ethics, Governance and Societyen
dc.contributor.authorAffiliationTzimoulis, Apostolos - Vrije Universiteit Amsterdam, School of Business and Economics, Ethics, Governance and Societyen
dc.references[1] L. Aceto, A. Ingolfsdottir, J. Sack, Resource bisimilarity and graded bisimilarity coincide, Information Processing Letters, vol. 111(2) (2010), pp. 68–76, DOI:
dc.references[2] C. Cerrato, General canonical models for graded normal logics (Graded modalities IV), Studia Logica, vol. 49(2) (1990), pp. 241–252, DOI:
dc.references[3] C. Cerrato, Decidability by filtrations for graded normal logics (graded modalities V), Studia Logica, vol. 53(1) (1994), pp. 61–74, DOI:
dc.references[4] B. F. Chellas, Modal logic: an introduction, Cambridge University Press (1980).en
dc.references[5] J. Chen, G. Greco, A. Palmigiano, A. Tzimoulis, Non normal logics: semantic analysis and proof theory, [in:] Proc. of WoLLIC, vol. 11541 of LNCS, Springer (2019), pp. 99–118, DOI:
dc.references[6] F. De Caro, Graded modalities, II (canonical models), Studia Logica, vol. 47(1) (1988), pp. 1–10, DOI:
dc.references[7] M. de Rijke, A note on graded modal logic, Studia Logica, vol. 64(2) (2000), pp. 271–283, DOI:
dc.references[8] K. Fine, In so many possible worlds., Notre Dame Journal of formal logic, vol. 13(4) (1972), pp. 516–520, DOI:
dc.references[9] L. F. Goble, Grades of modality, Logique et Analyse, vol. 13(51) (1970), pp. 323–334.en
dc.references[10] H. H. Hansen, Monotonic modal logics, ILLC Report Nr: PP-2003-24, University of Amsterdam (2003).en
dc.references[11] D. Kaplan, S5 with multiple possibility, Journal of Symbolic Logic, vol. 35(2) (1970), p. 355, DOI:
dc.references[12] M. Ma, K. Sano, How to update neighbourhood models, Journal of Logic and Computation, vol. 28(8) (2018), pp. 1781–1804, DOI:
dc.references[13] M. Ma, H. van Ditmarsch, Dynamic Graded Epistemic Logic, The Review of Symbolic Logic, vol. 12(4) (2019), pp. 663–684, DOI:
dc.references[14] E. Pacuit, Neighborhood semantics for modal logic, Short Textbooks in Logic, Springer (2017), DOI:
dc.references[15] W. van der Hoek, On the semantics of graded modalities, Journal of Applied Non-Classical Logics, vol. 2(1) (1992), pp. 81–123.en
dc.references[16] W. van der Hoek, J.-J. C. Meyer, Graded modalities in epistemic logic, [in:] International Symposium on Logical Foundations of Computer Science, Springer (1992), pp. 503–514, DOI:
dc.contributor.authorEmailChen, Jinsheng -
dc.contributor.authorEmailvan Ditmarsch, Hans -
dc.contributor.authorEmailGreco, Giuseppe -
dc.contributor.authorEmailTzimoulis, Apostolos -

Files in this item


This item appears in the following Collection(s)

Show simple item record
Except where otherwise noted, this item's license is described as